POST-TENSIONED SLABS

Fundamentals of the design process

Ultimate limit state

Serviceability limit state

Detailed design aspects

Construction Procedures

Preliminary Design

Execution of the calculations

Completed structures

PUBLISHED BY
VSL INTERNATIONAL LTD.
Foreword

With the publication of this technical report, VSL INTERNATIONAL LTD is pleased to make a contribution to the development of Civil Engineering.

The research work carried out throughout the world in the field of post-tensioned slab structures and the associated practical experience have been reviewed and analysed in order to establish the recommendations and guidelines set out in this report. The document is intended primarily for design engineers, but we shall be very pleased if it is also of use to contractors and clients. Through our representatives we offer to interested parties throughout the world our assistance and support in the planning, design and construction of posttensioned buildings in general and post-tensioned slabs in particular.

I would like to thank the authors and all those who in some way have made a contribution to the realization of this report for their excellent work. My special thanks are due to Professor Dr B. Thürlimann of the Swiss Federal Institute of Technology (ETH) Zürich and his colleagues, who were good enough to read through and critically appraise the manuscript.

Hans Georg Elsaesser
Chairman of the Board and President
If VSLINTERNATIONAL LTD

Berne, January 1985

Table of contents

1. Introduction 2
1.1. General 2
1.2. Historical review 2
1.3. Post-tensioning with or without bonding of tendons 3
1.4. Typical applications of post-tensioned slabs 4

2. Fundamentals of the design process 6
2.1. General 6
2.2. Research 6
2.3. Standards 6

3. Ultimate limit state 6
3.1. Flexure 6
3.2. Punching shear 9

4. Serviceability limit state 11
4.1. Crack limitation 11
4.2. Deflections 12
4.3. Post-tensioning force in the tendon 12
4.4. Vibrations 13
4.5. Fire resistance 13
4.6. Corrosion protection 13

5. Detail design aspects 13
5.1. Arrangement of tendons 13
5.2. Joints

6. Construction procedures 16
6.1. General 16
6.2. Fabrication of the tendons 16
6.3. Construction procedure for bonded post-tensioning 16
6.4. Construction procedure for unbonded post-tensioning 17

7. Preliminary design 19

8. Execution of the calculations 20
8.1. Flow diagram 20
8.2. Calculation example 20

9. Completed structures 26
9.1. Introduction 26
9.2. Orchard Towers, Singapore 26
9.3. Headquarters of the Ilford Group, Basildon, Great Britain 28
9.4. Centro Empresarial, São Paulo, Brazil 28

9.5. Doubletree Inn, Monterey, California, USA 30
9.6. Shopping Centre, Burwood, Australia 30
9.7. Municipal Construction Office Building, Leiden, Netherlands 31
9.8. Underground garage for ÖVA Brunswick, FR Germany 32
9.9. Shopping Centre, Oberes Muri-Weitikon, Berne, Switzerland 33
9.10. Underground garage Oed XII, Lure, Austria 35
9.11. Multi-storey car park, Seas-Fe, Switzerland 35
9.12. Summary 37

10. Bibliography 38

Appendix 1: Symbols/Definitions/ dimensional units/ signs 39

Appendix 2: Summary of various standards for unbonded post-tensioning 41
1. Introduction

1.1. General

Post-tensioned construction has for many years occupied a very important position, especially in the construction of bridges and storage tanks. The reason for this lies in its decisive technical and economical advantages.

The most important advantages offered by post-tensioning may be briefly recalled here:
- By comparison with reinforced concrete, a considerable saving in concrete and steel, since, due to the working of the entire concrete cross-section more slender designs are possible.
- Smaller deflections than with steel and reinforced concrete.
- Good crack behaviour and therefore permanent protection of the steel against corrosion.
- Almost unchanged serviceability even after considerable overload, since temporary cracks close again after the overload has disappeared.
- High fatigue strength, since the amplitude of the stress changes in the prestressing steel under alternating loads are quite small.

For the above reasons post-tensioned construction has also come to be used in many situations in buildings (see Fig 1).

The objective of the present report is to summarize the experience available today in the field of post-tensioning in building construction and in particular to discuss the design and construction of post-tensioned slab structures, especially post-tensioned flat slabs*. A detailed explanation will be given of the checks to be carried out, the aspects to be considered in the design and the construction procedures and sequences of a post-tensioned slab. The execution of the design will be explained with reference to an example. In addition, already built structures will be described. In all the chapters, both bonded and unbonded post-tensioning will be dealt with.

In addition to the already mentioned general features of post-tensioned construction, the following advantages of post-tensioned slabs over reinforced concrete slabs may be listed:
- More economical structures resulting from the use of prestressing steels with a very high tensile strength instead of normal reinforcing steels.
- Larger spans and greater slenderness (see Fig. 2). The latter results in reduced dead load, which also has a beneficial effect upon the columns and foundations and reduces the overall height of buildings or enables additional floors to be incorporated in buildings of a given height.
- Under permanent load, very good behavior in respect of deflections and cracking.
- Higher punching shear strength obtainable by appropriate layout of tendons
- Considerable reduction in construction time as a result of earlier striking of formwork real slabs.

* For definitions and symbols refer to appendix 1.

1.2. Historical review

Although some post-tensioned slab structures had been constructed in Europe quite early on, the real development took place in the USA and Australia. The first post-tensioned slabs were erected in the USA in 1955, already using unbonded post-tensioning. In the succeeding years numerous post-tensioned slabs were designed and constructed in connection with the lift slab method. Post-tensioning enabled the lifting weight to be reduced and the deflection and cracking performance to be improved. Attempts were made to improve knowledge in depth by theoretical studies and experiments on post-tensioned plates (see Chapter 2.2). Joint efforts by researchers, design engineers and prestressing firms resulted in corresponding standards and recommendations and assisted in promoting the widespread use of this form of construction in the USA and Australia. To date, in the USA alone, more than 50 million m² of slabs have been post-tensioned.

In Europe, renewed interest in this form of construction was again exhibited in the early seventies. Some constructions were completed at that time in Great Britain, the Netherlands and Switzerland.
Intensive research work, especially in Switzerland, the Netherlands and Denmark and more recently also in the Federal Republic of Germany have expanded the knowledge available on the behaviour of such structures. These studies form the basis for standards, now in existence or in preparation in some countries. From purely empirical beginnings, a technically reliable and economical form of construction has arisen over the years as a result of the efforts of many participants. Thus the method is now also fully recognized in Europe and has already found considerable spreading various countries (in the Netherlands, in Great Britain and in Switzerland for example).

1.3. Post-tensioning with or without bonding of tendons

1.3.1. Bonded post-tensioning

As is well-known, in this method of post-tensioning the prestressing steel is placed in ducts, and after stressing is bonded to the surrounding concrete by grouting with cement suspension. Round corrugated ducts are normally used. For the relatively thin floor slabs of buildings, the reduction in the possible eccentricity of the prestressing steel with this arrangement is, however, too large, in particular at cross-over points, and for this reason flat ducts have become common (see also Fig. 6). They normally contain tendons comprising four strands of nominal diameter 13 mm (0.5”), which have proved to be logical for constructional reasons.

1.3.2. Unbonded post-tensioning

In the early stages of development of post-tensioned concrete in Europe, post-tensioning without bond was also used to some extent (for example in 1936/37 in a bridge constructed in Aue/Saxony [D] according to the Dischinger patent or in 1948 for the Meuse, Bridge at Sclayn [B] designed by Magnel). After a period without any substantial applications, some important structures have again been built with unbonded post-tensioning in recent years. In the first applications in building work in the USA, the prestressing steel was grassed and wrapped in wrapping paper, to facilitate its longitudinal movement during stressing. During the last few years, however, the method described below for producing the sheathing has generally become common.

The strand is first given a continuous film of permanent corrosion protecting grease in a continuous operation, either at the manufacturer’s works or at the prestressing firm. A plastics tube of polyethylene or polypropylene of at least 1 mm wall thickness is then extruded over this (Fig. 3 and 4). The plastics tube forms the primary and the grease the secondary corrosion protection.

Arguments in favour of post-tensioning without bonding:
- Maximum possible tendon eccentricities, since tendon diameters are minimal; of special importance in thin slabs (see Fig. 6).
- Prestressing steel protected against corrosion ex works.
- Simple and rapid placing of tendons.
- Very low losses of prestressing force due to friction.
- Grouting operation is eliminated.
- In general more economical.

Arguments for post-tensioning with bonding:
- Larger ultimate moment.
- Local failure of a tendon (due to fire, explosion, earthquakes etc.) has only limited effects.

Whereas in the USA post-tensioning without bonding is used almost exclusively, bonding is deliberately employed in Australia.

1.3.3. Bonded or unbonded?

This question was and still is frequently the subject of serious discussions. The subject will not be discussed in detail here, but instead only the most important arguments far and against will be listed:

Figure 3: Diagrammatic illustration of the extrusion process

Figure 4: Extrusion plant

Figure 5: Structure of a plastics-sheathed, greased strand (monostrand)

Figure 6: Comparison between the eccentricities that can be attained with various types of tendon
Among the arguments for bonded post-tensioning, the better performance of the slabs in the failure condition is frequently emphasized. It has, however, been demonstrated that equally good structures can be achieved in unbonded post-tensioning by suitable design and detailing. It is not the intention of the present report to express a preference for one type of post-tensioning or the other. It is always possible that local circumstances or limiting engineering conditions (such as standards) may become the decisive factor in the choice. Since, however, there are reasons for assuming that the reader will be less familiar with unbonded post-tensioning, this form of construction is dealt with somewhat more thoroughly below.

1.4. Typical applications of post-tensioned slabs

As already mentioned, this report is concerned exclusively with post-tensioned slab structures. Nevertheless, it may be pointed out here that post-tensioning can also be of economic interest in the following components of a multi-storey building:
- Foundation slabs (Fig 7).
- Cantilevered structures, such as overhanging buildings (Fig 8).
- Facade elements of large area; here light post-tensioning is a simple method of preventing cracks (Fig. 9).
- Main beams in the form of girders, lattice girders or north-light roofs (Fig. 10 and 11).

Typical applications for post-tensioned slabs may be found in the frames or skeletons for office buildings, multi-storey car parks, schools, warehouses etc. and also in multi-storey flats where, for reasons of internal space, frame construction has been selected (Fig. 12 to 15).

What are the types of slab system used?
- For spans of 7 to 12 m, and live loads up to approx. 5 kN/m2, flat slabs (Fig. 16) or slabs with shallow main beams running in one direction (Fig. 17) without column head drops or flares are usually selected.
- For larger spans and live loads, flat slabs with column head drops or flares (Fig 18), slabs with main beams in both directions (Fig 19) or waffle slabs (Fig 20) are used.
Figure 12: Office and factory building

Figure 13: Multi-storey car park

Figure 14: School

Figure 16: Flat Slab

Figure 15: Multi-storey flats

Figure 17: Slab with main beams in one direction

Figure 18: Flat slab with column head drops

Figure 19: Slab with main beams in both directions

Figure 20: Waffle slab
2. Fundamentals of the design process

2.1. General
The objective of calculations and detailed design is to dimension a structure so that it will satisfactorily undertake the function for which it is intended in the service state, will possess the required safety against failure, and will be economical to construct and maintain. Recent specifications therefore demand a design for the «ultimate» and «serviceability» limit states.

Ultimate limit state: This occurs when the ultimate load is reached; this load may be limited by yielding of the steel, compression failure of the concrete, instability of the structure or material fatigue. The ultimate load should be determined by calculation as accurately as possible, since the ultimate limit state is usually the determining criterion. Serviceability limit state: Here rules must be complied with, which limit cracking, deflections and vibrations so that the normal use of a structure is assured. The rules should also result in satisfactory fatigue strength.

The calculation guidelines given in the following chapters are based upon this concept. They can be used for flat slabs with or without column head drops or flares. They can be converted appropriately also for slabs with main beams, waffle slabs etc.

2.2. Research
The use of post-tensioned concrete and thus also its theoretical and experimental development goes back to the last century. From the start, both post-tensioned beam and slab structures were investigated. No independent research has therefore been carried out for slabs with bonded post-tensioning. Slabs with unbonded post-tensioning, on the other hand, have been thoroughly researched, especially since the introduction of monostrands.

The first experiments on unbonded post-tensioned single-span and multi-span flat slabs were carried out in the fifties [1], [2]. They were followed, after the introduction of monostrands, by systematic investigations into the load-bearing performance of slabs with unbonded post-tensioning [3], [4], [5], [6], [7], [8], [9], [10]. The results of these investigations were to some extent embodied in the American, British, Swiss and German standard [11], [12], [13], [14], [15] and in the FIP recommendations [16].

Various investigations into beam structures are also worthy of mention in regard to the development of unbonded post-tensioning [17], [18], [19], [20], [21], [22], [23]. The majority of the publications listed are concerned predominantly with bending behaviour. Shear behaviour and in particular punching shear in flat slabs has also been thoroughly researched. A summary of punching shear investigations into normally reinforced slabs will be found in [24]. The influence of post-tensioning on punching shear behaviour has in recent years been the subject of various experimental and theoretical investigations [7], [25], [26], [27]. Other research work relates to the fire resistance of post-tensioned structures, including bonded and unbonded post-tensioned slabs. Information on this field will be found, for example, in [28] and [29]. In slabs with unbonded post-tensioning, the protection of the tendons against corrosion is of extreme importance. Extensive research has therefore also been carried out in this field [30].

2.3. Standards
Bonded post-tensioned slabs can be designed with regard to the specifications on post-tensioned concrete structures that exist in almost all countries. For unbonded post-tensioned slabs, on the other hand, only very few specifications and recommendations at present exist [12], [13], [15]. Appropriate regulations are in course of preparation in various countries. Where no corresponding national standards are in existence yet, the FIP recommendations [16] may be applied. Appendix 2 gives a summary of some important specifications, either already in existence or in preparation, on slabs with unbonded post-tensioning.

3. Ultimate limit state

3.1. Flexure
3.1.1. General principles of calculation
Bonded and unbonded post-tensioned slabs can be designed according to the known methods of the theories of elasticity and plasticity in an analogous manner to ordinarily reinforced slabs [31], [32], [33].

A distinction is made between the following methods:
A. Calculation of moments and shear forces according to the theory of elasticity; the sections are designed for ultimate load.
B. Calculation and design according to the theory of plasticity.

Method A
In this method, still frequently chosen today, moments and shear forces resulting from applied loads are calculated according to the elastic theory for thin plates by the method of equivalent frames, by the beam method or by numerical methods (finite differences, finite elements).

The prestress should not be considered as an applied load. It should intentionally be taken into account only in the determination of the ultimate strength. No moments and shear forces due to prestress and therefore also no secondary moments should be calculated.

The moments and shear forces due to applied loads multiplied by the load factor must be smaller at every section than the ultimate strength divided by the cross-section factor. The ultimate limit state condition to be met may therefore be expressed as follows [34]:

$$S \cdot Y \leq \frac{R}{\gamma m}$$

(3.1.)

This apparently simple and frequently encountered procedure is not without its problems. Care should be taken to ensure that both flexure and torsion are allowed for at all sections (and not only the section of maximum loading). It carefully applied this method, which is similar to the static method of the theory of plasticity,

gives an ultimate load which lies on the safety side.

In certain countries, the forces resulting from the curvature of prestressing tendons (transverse components) are also treated as applied loads. This is not advisable for the ultimate load calculation, since in slabs the determining of the secondary moment and therefore a correct ultimate load calculation is difficult.

The consideration of transverse components does however illustrate very well the effect of prestressing in service state. It is therefore highly suitable in the form of the load balancing method proposed by T.Y. Lin [35] for calculating the deflections (see Chapter 4.2).

Method B
In practice, the theory of plasticity, is being increasingly used for calculation and design. The following explanations show how its application to flat slabs leads to a stole ultimate load calculation which will be easily understood by the reader.
The condition to be fulfilled at failure here is:
\[(g+q)u \geq \gamma\]
(3.2)
where \(\gamma = \gamma_f\).
The ultimate design loading \((g+q)_u\), divided by the service loading \((g+q)\) must correspond to a value at least equal to the safety factor \(y\).
The simplest way of determining the ultimate design loading \((g+q)_u\) is by the **kinematic method**, which provides an **upper boundary for the ultimate load**. The mechanism to be chosen is that which leads to the lowest load.

Fig. 21 and 22 illustrate mechanisms for an internal span. In flat slabs with usual column dimensions (\(\xi > 0.06\)) the ultimate load can be determined to a high degree of accuracy by the line mechanisms \(\odot\) or \(\odot\) (yield lines 1-1 or 2-2 respectively). Contrary to Fig. 21, the negative yield line is assumed for purposes of approximation to coincide with the line connecting the column axes (Fig. 23), although this is kinematically incompatible. In the region of the column, a portion of the internal work is thereby neglected, which leads to the result that the load calculated in this way lies very close to the ultimate load or below it.

On the assumption of uniformly distributed top and bottom reinforcement, the ultimate design loads of the various mechanisms are compared in Fig. 24.

In post-tensioned flat slabs, the prestressing and the ordinary reinforcement are not uniformly distributed. In the approximation, however, both are assumed as uniformly distributed over the width \(l_1/2 + l_2/2\) (Fig. 25). The ultimate load calculation can then be carried out for a strip of unit width 1. The actual distribution of the tendons will be in accordance with chapter 5.1. The top layer ordinary reinforcement should be concentrated over the columns in accordance with Fig. 35.

The load corresponding to the individual mechanisms can be obtained by the principle of virtual work. This principle states that, for a virtual displacement, the sum of the work \(W_e\) performed by the applied forces and of the dissipation work \(W_i\) performed by the internal forces must be equal to zero.
\[W_e + W_i = 0\]
(3.3)

If this principle is applied to mechanism \(\odot\) (yield lines 1-1; Fig. 23), then for a strip of width \(l_1/2 + l_2/2\) the ultimate design load \((g+q)_u\) is obtained.

Internal span:
\[W_k = \frac{1}{2} \cdot (g+q)_u \cdot \left(\frac{l_1 + l_2}{2}\right)\]
(3.4)
\[W_i = -\frac{4}{l_1} \cdot m_u \cdot (1 + \lambda) \cdot \left(\frac{l_1 + l_2}{2}\right)\]
(3.5)

Edge span:
\[(g+q)_u = \frac{8}{l_1} \cdot m_u \cdot (1 + \lambda) \cdot \left(\frac{l_1 + l_2}{2}\right)\]
(3.6)

Where \(\lambda = m_{uy} / m_u\) (considering Fig. 25).

\[(g+q)_u = \frac{8}{l_1} \cdot m_u \cdot (1 + \lambda) \cdot \left(\frac{l_1 + l_2}{2}\right)\]
(3.7)

Edge span with cantilever:
\[(g+q)_u = \frac{8}{l_1} \cdot m_u \cdot (1 + \lambda) \cdot \left(\frac{l_1 + l_2}{2}\right)\]
(3.8)
For complicated structural systems, the determining mechanisms have to be found. Descriptions of such mechanisms are available in the relevant literature, e.g. [31], [36]. In special cases with irregular plan shape, recesses etc., simple equilibrium considerations (static method) very often prove to be a suitable procedure. This leads in the simplest case to the carrying of the load by means of beams (beam method). The moment distribution according to the theory of elasticity may also be calculated with the help of computer programmes and internal stress states may be superimposed upon these moments. The design has then to be done according to Method A.

3.12. Ultimate strength of a cross-section
For given dimensions and concrete qualities, the ultimate strength of a cross-section is dependent upon the following variables:
- Ordinary reinforcement
- Prestressing steel, bonded or unbonded
- Membrane effect

The membrane effect is usually neglected when determining the ultimate strength. In many cases this simplification constitutes a considerable safety reserve [8], [10]. The ultimate strength due to ordinary reinforcement and bonded post-tensioning can be calculated on the assumption, which in slabs is almost always valid, that the steel yields. This is usually true also for cross-sections over intermediate columns, where the tendons are highly concentrated. In bonded post-tensioning, the prestressing force in cracks is transferred to the concrete by bond stresses on either side of the crack. Around the column mainly radial cracks open and a tangentially acting concrete compressive zone is formed. Thus the so-called effective width is considerably increased [27]. In unbonded post-tensioning, the prestressing force is transferred to the concrete by the end anchorages and, by approximation, is therefore uniformly distributed over the entire width at the columns.

3.1.3. Stress increase in unbonded post-tensioned steel
Hitherto, the stress increase in the unbonded post-tensioned steel has either been neglected [34] or introduced as a constant value [37] or as a function of the reinforcement content and the concrete compressive strength [38]. A differentiated investigation [10] shows that this increase in stress is dependent both upon the geometry and upon the deformation of the entire system. There is a substantial difference depending upon whether a slab is laterally restrained or not. In a slab system, the internal spans may be regarded as slabs with lateral restraint, while the edge spans in the direction perpendicular to the free edge or the cantilever, and corner spans) the relationship between tendon extension and the span l is given by:

\[\frac{\Delta l}{l} = 3 \cdot \frac{a_y}{l} \cdot \frac{d_p}{l} \] \hspace{1cm} (3.13.)

whereby a triangular deflection diagram and an internal lever arm of \(y = 0.75 \cdot d \), is assumed. The tendon extension may easily be determined from Fig. 27.

For a rigid lateral restraint (internal spans) the relationship for the tendon extension can be calculated approximately as

\[\frac{\Delta l}{l} = 2 \cdot \frac{(a_y)^2}{l} + 4 \cdot \frac{a_y}{l} \cdot \frac{h_p}{l} \] \hspace{1cm} (3.14.)

Fig. 28 enables the graphic evaluation of equation (3.14.), for the deviation of which we refer to [10].

The stress increase is obtained from the actual stress-strain diagram for the steel and from the elongation of the tendon \(\Delta l \) uniformly distributed over the free length L of the tendon between the anchorages. In the elastic range and with a modulus of elasticity \(E_p \) for the prestressing steel, the increase in steel stress is found to be

\[\Delta \sigma_p = \Delta l \cdot \frac{E_p}{L} \] \hspace{1cm} (3.15)

The steel stress, plus the stress increase \(\Delta \sigma_p \), must, of course, not exceed the yield strength of the steel.

In the ultimate load calculation, care must be taken to ensure that the stress increase is established from the determining mechanism. This is illustrated diagrammatically.

Figure 26: Ultimate strength of a cross-section (plastic moment)

For unbonded post-tensioning steel, the question of the steel stress that acts in the ultimate limit state arises. If this steel stress is known (see Chapter 3.1.3.), the ultimate strength of a cross-section (plastic moment) can be determined in the usual way (Fig. 26):

\[m_u = z_x \cdot \frac{(d_x - x_c)}{2} + z_c \cdot \frac{(d_p - x_c)}{2} \] \hspace{1cm} (3.9)

where

\[z_x = \frac{a_y \cdot f_y}{E_p} \] \hspace{1cm} (3.10.)

\[z_p = \frac{a_p \cdot (\sigma_y - \Delta \sigma_p)}{3} \] \hspace{1cm} (3.11.)

\[x_c = \frac{z_x + z_p}{B - f_{cd}} \] \hspace{1cm} (3.12.)

By introducing the tendon extension and with lateral restraint, while the edge spans in the direction perpendicular to the free edge or the cantilever, and corner spans) the relationship between tendon extension and the span L is given by:

\[\frac{\Delta l}{l} = 3 \cdot \frac{a_y}{l} \cdot \frac{d_p}{l} \] \hspace{1cm} (3.13.)

Figure 27: Tendon extension without lateral restraint

Figure 28: Tendon extension with rigid lateral restraint

Figure 29: Tendon extension with lateral restraint

Figure 24: Stiffening effect of a cross-section

Figure 25: Stress increase in a cross-section

Figure 23: Stress increase in a cross-section
3.2. Punching shear

32.1. General

Punching shear has a position of special importance in the design of flat slabs. Slabs, which are practically always under-reinforced against flexure, exhibit pronounced ductile bending failure. In beams, due to the usually present shear reinforcement, a ductile failure is usually assured in shear also. Since slabs, by contrast, are provided with punching shear reinforcement only in very exceptional cases, because such reinforcement is avoided if at all possible for practical reasons, punching shear is associated with a brittle failure of the concrete.

This report cannot attempt to provide generally valid solutions for the punching problem. Instead, one possible solution will be illustrated. In particular we shall discuss how the prestress can be taken into account in the existing design specifications, which have usually been developed for ordinarily reinforced flat slabs.

In the last twenty years, numerous design formulae have been developed, which were obtained from empirical investigations and, in a few practical cases, by model representation. The calculation methods and specifications in most common use today limit the nominal shear stress in a critical section around the column in relation to a design value as follows [9]:

$$\tau_{ud} \leq \tau_{sd}$$

The design shear stress value τ_{ud} is established from shear tests carried out on portions of slabs. It is dependent upon the concrete strength f'_c, the bending reinforcement content p_m, the shear reinforcement content p_v, the slab slenderness ratio h/l, the ratio of column dimension to slab thickness ζ, bond properties and others. In the various specifications and standards, only some of these influences are taken into account.

3.2.2. Influence of post tensioning

Post-tensioning can substantially alleviate the punching shear problem in flat slabs if the tendon layout is correct.

A portion of the load is transferred by the transverse components resulting from prestressing directly to the column. The tendons located inside the critical shear periphery (Fig. 30) can still carry loads in the form of a cable system even after the concrete compressive zone has failed and can thus prevent the collapse of the slab. The zone in which the prestress has a load-relieving effect is here intentionally assumed to be smaller than the punching cone. Recent tests [27] have demonstrated that, after the shear cracks have appeared, the tendons located outside the critical shear periphery rupture the concrete vertically unless heavy ordinary reinforcement is present, and they can therefore no longer provide a load-bearing function.

If for constructional reasons it is not possible to arrange the tendons over the column within the critical shear periphery or column strip b_v defined in Fig. 30 then the transfer of the transverse components resulting from the prestress to the column must be included in the design analysis.

Example of the calculation of a tendon extension:

According to [14], which is substantially in line with the above considerations, the nominal failure state is reached when with a determining mechanism a deflection a_u of 1/40th of the relevant span l is present. Therefore equations (3.13) and (3.14) for the tendon extension can be simplified as follows:

Without lateral restraint, e.g. for edge spans of flat slabs:

$$\Delta l = 0.075 \cdot d_p$$

With a rigid lateral restraint, e.g. for internal spans of flat slabs:

$$\Delta l = 0.05 \cdot (0.025 \cdot 1 + 2 \cdot h_p)$$
from tendons passing near the column should be investigated with the help of a space frame model. The distance between the outermost tendons to be taken into account for direct load transfer and the edge of the column should not exceed \(d_s \) on either side of the column. The favourable effect of the prestress can be taken account of as follows:

1. The transverse component \(V_p \) resulting from the effectively present prestressing force and exerted directly in the region of the critical shear periphery can be subtracted from the column load resulting from the applied loads. In the tendons, the prestressing force after deduction of all losses and without the stress increase should be assumed. The transverse component \(V_p \) is calculated from Fig. 30 as

\[
V_p = \sum P_i \cdot a_i = P \cdot a \quad (3.21)
\]

Here, all the tendons situated within the critical shear periphery should be considered, and the angle of deviation within this shear periphery should be used for the individual tendons.

2. The bending reinforcement is sometimes taken into account when establishing the permissible shear stress [37], [38], [39]. The prestress can be taken into account by an equivalent portion [15], [16]. However, as the presence of concentric compression due to prestress in the column area is not always guaranteed (rigid walls etc.) it is recommended that this portion should be ignored.

3.2.3. Carrying out the calculation

A possible design procedure is shown in [14]; this proof, which is to be demonstrated in the ultimate limit state, is as follows:

\[
R_d \geq \frac{V_{g+q} - V_p}{1.4} \quad (3.22)
\]

The design value for ultimate strength for concentric punching of columns through slabs of constant thickness without punching shear reinforcement should be assumed as follows:

\[
R_d = u_c \cdot d_s \cdot 1.5 \cdot T_{ud} \quad (3.23)
\]

\(U_c \) is limited to \(16 \cdot d_s \) at maximum and the ratio of the sides of the rectangle surrounding the column must not exceed 2:1. \(T_{ud} \) can be taken from Table I.

If punching shear reinforcement must be incorporated, it should be designed by means of a space frame model with a concrete compressive zone in the failure state inclined at 45° to the plane of the slab, for the column force \(1.8 \cdot V_{p+q} - V_p \). Here, the following condition must be complied with:

\[
2 \cdot R_d \geq 1.8 \cdot V_{p+q} - V_p \quad (3.24)
\]

For punching shear reinforcement, vertical stirrups are recommended; these must pass around the top and bottom slab reinforcement. The stirrups nearest to the edge of the column must be at a distance from this column not exceeding \(0.5 \cdot d_s \). Also, the spacing between stirrups in the radial direction must not exceed \(0.5 \cdot d_s \) (Fig. 31). Slab connections to edge columns and corner columns should be designed according to the considerations of the **beam theory**. In particular, both ordinary reinforcement and post-tensioned tendons should be continued over the column and properly anchored at the free edge (Fig. 32).
4. Serviceability limit state

4.1. Crack limitation

4.1.1. General

In slabs with ordinary reinforcement or bonded post-tensioning, the development of cracks is dependent essentially upon the bond characteristics between steel and concrete. The tensile force at a crack is almost completely concentrated in the steel. This force is gradually transferred from the steel to the concrete by bond stresses. As soon as the concrete tensile strength or the tensile resistance of the concrete tensile zone is exceeded at another section, a new crack forms.

The influence of unbonded post-tensioning upon the crack behaviour cannot be investigated by means of bond laws. Only very small frictional forces develop between the unbonded stressing steel and the concrete. Thus the tensile force acting in the steel is transferred to the concrete almost exclusively as a compressive force at the anchorages.

Theoretical [10] and experimental [8] investigations have shown that normal forces arising from post-tensioning or lateral membrane forces influence the crack behaviour in a similar manner to ordinary reinforcement.

In [10], the ordinary reinforcement content p^* required for crack distribution is given as a function of the normal force arising from prestressing and from the lateral membrane force n. Fig. 33 gives p^* as a function of p^*, where

$$p^* = p_0 - \frac{n}{\sigma_{p0}}$$ \hspace{1cm} (4.1.)

If n is a compressive force, it is to be provided with a negative sign.

![Figure 33: Reinforcement content required to ensure distribution of cracks](image)

Various methods are set out in different specifications for the assessment and control of crack behaviour:

- Limitation of the stresses in the ordinary reinforcement calculated in the cracked state [40].
- Limitation of the concrete tensile stresses calculated for the homogeneous cross-section [12].
- Determination of the minimum quantity of reinforcement that will ensure crack distribution [14].
- Checking for cracks by theoretically or empirically obtained crack formulae [15].

4.12. Required ordinary reinforcement

The design principles given below are in accordance with [14]. For determining the ordinary reinforcement required, a distinction must be made between edge spans, internal spans and column zones.

Edge spans:

Required ordinary reinforcement (Fig. 34):

$$p_e \geq 0.15 - 0.50 \cdot p_0$$ \hspace{1cm} (4.2)

Lower limit: $$p_e \geq 0.05\%$$

![Figure 34: Minimum ordinary reinforcement required as a function of the post-tensioned reinforcement for edge spans](image)

Internal spans:

For internal spans, adequate crack distribution is in general assured by the post-tensioning and the lateral membrane compressive forces that develop with even quite small deflections. In general, therefore, it is not necessary to check for minimum reinforcement. The quantity of normal reinforcement required for the ultimate limit state must still be provided.

Column zone:

In the column zone of flat slabs, considerable additional ordinary reinforcement must always be provided. The proposal of DIN 4227 may be taken as a guideline, according to which in the zone $b_{col} = b_c + 3 \cdot d_s$ (Fig. 30) at least 0.3% reinforcement must be provided and, within the rest of the column strip ($b_d = 0.4 \cdot I$) at least 0.15% must be provided (Fig. 35). The length of this reinforcement including anchor length should be $0.4 \cdot I$. Care should be taken to ensure that the bar diameters are not too large.

The arrangement of the necessary minimum reinforcement is shown diagrammatically in Fig.35. Reinforcement in both directions is generally also provided everywhere in the edge spans. In internal spans it may be necessary for design reasons, such as point loads, dynamic loads (spalling of concrete) etc. to provide limited ordinary reinforcement.

![Figure 35: Diagrammatic arrangement of minimum reinforcement](image)
4.2. Deflections

Post-tensioning has a favourable influence upon the deflections of slabs under service loads. Since, however, post-tensioning also makes possible thinner slabs, a portion of this advantage is lost.

As already mentioned in Chapter 3.1.1., the load-balancing method is very suitable for calculating deflections. Fig. 36 and 37 illustrate the procedure diagrammatically.

Under permanent loads, which may with advantage be largely compensated by the transverse components from post-tensioning, the deflections can be determined on the assumption of uncracked concrete.

Under live loads, however, the stiffness is reduced by the formation of cracks. In slabs with bonded post-tensioning, the maximum loss of stiffness can be estimated from the normal reinforced concrete theory. In slabs with unbonded post-tensioning, the reduction in stiffness, which is very large in a simple beam reinforced by unbonded post-tensioning, is kept within limits in edge spans by the ordinary reinforcement necessary for crack distribution.

4.3. Post-tensioning force in the tendon

4.3.1. Losses due to friction

For monostrands, the frictional losses are very small. Various experiments have demonstrated that the coefficients of friction μ=0.06 and k = 0.0005/m can be assumed.

It is therefore adequate for the design to adopt a lump sum figure of 2.5% prestressing force loss per 10 m length of strand. A constant force over the entire length becomes established in the course of time. For bonded cables, the frictional coefficients are higher and the force does not become uniformly distributed over the entire length.

The calculation of the frictional losses is carried out by means of the well-known formula \(P_m = P_0 \cdot e^{(-\mu \cdot k \cdot x)} \). For the coefficients of friction the average values of Table II can be assumed.

The force loss resulting from wedge drawing when the strands are locked off in the anchorage, can usually be compensated by overstressing. It is only in relatively short cables that the loss must be directly allowed for. The way in which this is done is explained in the calculation example (Chapter 8.2.).

4.3.2. Long-term losses

The long-term losses in slabs amount to about 10 to 12% of the initial stress in the prestressing steel. They are made up of the following components:

Creep losses:
Since the slabs are normally post-tensioned for dead load, there is a constant compressive stress distribution over the cross-section. The compressive stress generally is between 1.0 and 2.5 N/mm\(^2\) and thus produces only small losses due to creep. A simplified estimate of the loss of stress can be obtained with the final value for the creep deformation:

\[
\Delta \sigma_{pc} = \epsilon_{pc} \cdot \frac{E_p}{E_c} \cdot E_p
\]

(4.6.)

Although the final creep coefficient \(\epsilon_{pc} \) due to early post-tensioning is high, creep losses exceeding 2 to 4% of the initial stress in the prestressing steel do not in general occur.

Shrinkage losses:
The stress losses due to shrinkage are given by the final shrinkage factor scs as:

\[
\Delta \sigma_{ps} = \epsilon_{scs} \cdot \frac{E_p}{E_c}
\]

(4.7.)

The shrinkage loss is approximately 5% of the initial stress in the prestressing steel.

Table II - Average values of friction for bonded cables

<table>
<thead>
<tr>
<th>Duct</th>
<th>(\mu)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>flat</td>
<td>0.20</td>
<td>0.0030/m</td>
</tr>
<tr>
<td>round</td>
<td>0.19</td>
<td>0.0008/m</td>
</tr>
</tbody>
</table>
Relaxation losses:
The stress losses due to relaxation of the post-tensioning steel depend upon the type of steel and the initial stress. They can be determined from graphs (see [42] for example). With the very low relaxation prestressing steels commonly used today, for an initial stress of 0.7 f_{pu} and ambient temperature of 20°C, the final stress loss due to relaxation is approximately 3%.

Losses due to elastic shortening of the concrete:
For the low centric compression due to prestressing that exists, the average stress loss is only approximately 0.5% and can therefore be neglected.

4.4. Vibrations
For dynamically loaded structures, special vibration investigations should be carried out. For a coarse assessment of the dynamic behaviour, the inherent frequency of the slab can be calculated on the assumption of homogeneous action.

4.5. Fire resistance
In a fire, post-tensioned slabs, like ordinarily reinforced slabs, are at risk principally on account of two phenomena: spalling of the concrete and rise of temperature in the steel. Therefore, above all, adequate concrete cover is specified for the steel (see Chapter 5.1.4.).

The fire resistance of post-tensioned slabs is virtually equivalent to that of ordinarily reinforced slabs, as demonstrated by corresponding tests. The strength of the prestressing steel does indeed decrease more rapidly than that of ordinary reinforcement as the temperature rises, but on the other hand in post-tensioned slabs better protection is provided for the steel as a consequence of the uncracked cross-section. The behaviour of slabs with unbonded post-tensioning is hardly any different from that of slabs with bonded post-tensioning, if the appropriate design specifications are followed. The failure of individual unbonded tendons can, however, jeopardize several spans. This circumstance can be allowed for by the provision of intermediate anchorages. From the static design aspect, continuous systems and spans of slabs with lateral constraints exhibit better fire resistance. An analysis of the fire resistance of posttensioned slabs can be carried out, for example, according to [43].

4.6. Corrosion protection
4.6.1. Bonded post-tensioning
The corrosion protection of grouted tendons is assured by the cement suspension injected after stressing. If the grouting operations are carefully carried out no problems arise in regard to protection. The anchorage block-outs are filled with low-shrinkage mortar.

4.6.2. Unbonded post-tensioning
The corrosion protection of monostands described in Chapter 1.3.2. must satisfy the following conditions:
- Freedom from cracking and no embrittlement or liquefaction in the temperature range -20° to +70 °C
- Chemical stability for the life of the structure
- No reaction with the surrounding materials
- Not corrosive or corrosion-promoting
- Watertight
A combination of protective grease coating and plastics sheathing will satisfy these requirements.

Experiments in Japan and Germany have demonstrated that both polyethylene and polypropylene ducts satisfy all the above conditions.

As grease, products on a mineral oil base are used; with such greases the specified requirements are also complied with. The corrosion protection in the anchorage zone can be satisfactorily provided by appropriate constructive detailing (Fig. 39), in such a manner that the prestressing steel is continuously protected over its entire length. The anchorage block-out is filled with low-shrinkage mortar.

5. Detail design aspects
5.1. Arrangement of tendons
5.1.1. General
The transference of loads from the interior of a span of a flat slab to the columns by transverse components resulting from prestressing is illustrated diagrammatically in Fig. 40.

In Fig. 41, four different possible tendon arrangements are illustrated: tendons only over the columns in one direction (a) or in two directions (b), the spans being ordinarily reinforced (column strip prestressing); tendons distributed in the span and concentrated along the column lines (c and d). The tendons over the columns (for column zone see Fig. 30) act as concealed main beams.

When selecting the tendon layout, attention should be paid to flexure and punching and also to practical construction aspects (placing of tendons). If the transverse comp-
Figure 41: Possible tendon arrangements

Under this loading case, the slab is stressed only by centric compressive stress. In regard to punching shear, it may be advantageous to position more than 50% of the tendons over the columns.

In the most commonly encountered cases, the tendon arrangement illustrated in Fig. 41 (d), with half the tendons in each direction uniformly distributed in the span and half concentrated over the columns, provides the optimum solution in respect of both design and economy.

5.1.2. Spacings
The spacing of the tendons in the span should not exceed 6h, to ensure transmission of point loads. Over the column, the clear spacing between tendons or strand bundles should be large enough to ensure proper compaction of the concrete and allow sufficient room for the top ordinary reinforcement. Directly above the column, the spacing of the tendons should be adapted to the distribution of the reinforcement.

In the region of the anchorages, the spacing between tendons or strand bundles must be chosen in accordance with the dimensions of the anchorages. For this reason also, the strand bundles themselves are splayed out, and the monostrands individually anchored.

5.1.3. Radii of curvature
For the load-relieving effect of the vertical component of the prestressing forces over the column to be fully utilized, the point of inflection of the tendons or bundles should be at a distance d/2 from the column edge (see Fig. 30). This may require that the minimum admissible radius of curvature be used in the column region. The extreme fibre stresses in the prestressing steel must remain below the yield strength under these conditions. By considering the natural stiffness of the strands and the admissible extreme fibre stresses, this gives a minimum radius of curvature for practical use of \(r = 2.50 \text{ m} \). This value is valid for strands of nominal diameter 13 mm (0.5") and 15 mm (0.6").

5.2. Joints
The use of post-tensioned concrete and, in particular, of concrete with unbonded tendons necessitates a rethinking of some long accepted design principles. A question that very often arises in building design is the arrangement of joints in the slabs, in the walls and between slabs and walls. Unfortunately, no general answer can be given to this question since there are certain factors in favour of and certain factors against joints. Two aspects have to be considered here:

Table IV - Minimum concrete cover for the post-tensioning steel (in mm) in respect of the fire resistance period required

<table>
<thead>
<tr>
<th>Support</th>
<th>Concrete</th>
<th>Fire resistance period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F 60</td>
<td>F 90</td>
</tr>
<tr>
<td>Continuous or prevented from straining</td>
<td>Normal</td>
<td>20</td>
</tr>
<tr>
<td>Light-weight</td>
<td>Normal</td>
<td>20</td>
</tr>
<tr>
<td>Freely supported and not prevented from straining</td>
<td>Normal</td>
<td>20</td>
</tr>
</tbody>
</table>
5.2.1. Influence upon the ultimate limit state behaviour
If the failure behaviour alone is considered, it is generally better not to provide any joints. Every joint is a cut through a load-bearing element and reduces the ultimate load strength of the structure. For a slab with unbonded post-tensioning, the membrane action is favourably influenced by a monolithic construction. This results in a considerable increase in the ultimate load (Fig. 42).

5.2.2. Influence upon the serviceability limit state
In long buildings without joints, inadmissible cracks in the load-bearing structure and damage to non-load-bearing constructional elements can occur as a result of horizontal displacements. These displacements result from the following influences:
- Shrinkage
- Temperature
- Elastic shortening due to prestress
- Creep due to prestress

The average material properties given in Table V enable one to see how such damage occurs. In a concrete structure, the following average shortenings and elongations can be expected:

<table>
<thead>
<tr>
<th>Material</th>
<th>Shortening/Metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrinkage</td>
<td>ΔI_{cs} = -0.25 mm/m</td>
</tr>
<tr>
<td>Temperature</td>
<td>ΔI_{ct} = -0.25 mm/m to +0.15 mm/m</td>
</tr>
<tr>
<td>Elastic shortening (for an average centric prestress of 1.5 N/mm² and E_c = 30 kN/mm²)</td>
<td>ΔI_{cel} = -0.05 mm/m</td>
</tr>
<tr>
<td>Creep</td>
<td>ΔI_{cc} = -0.15 mm/m</td>
</tr>
</tbody>
</table>

Elastic shortening due to prestress occurs due to transfer of the prestress to the longitudinal walls. Shortening due to prestress should be kept within limits particularly by the centric prestress not being made too high. It is recommended that an average centric prestress of \(\sigma_{cpm} = 1.5 \text{ N/mm}^2 \) should be selected and the value of 2.5 N/mm² should not be exceeded. In concrete walls, the relative shortening between slabs and walls can be reduced by approximately uniform prestress in the slabs and walls.

In closed buildings, slabs and walls in the internal rooms are subject to low temperature fluctuations. External walls and unprotected roof slabs undergo large temperature fluctuations. In open buildings, the relative temperature difference is small. Particular considerations arise for the connection to the foundation and where different types of construction materials are used.

Heat expansion and creep due to prestress:
Elastic shortening is relatively small. By subdividing the slab into separate concreting stages, which are separately post-tensioned, the shortening of the complete slab is reduced. Creep, on the other hand, acts upon the entire length of the slab. A certain reduction occurs due to transfer of the prestress to the longitudinal walls.

Shrinkage:
Concrete always shrinks, the degree of shrinkage being highly dependent upon the water-cement ratio in the concrete, the cross-sectional dimensions, the type of curing and the atmospheric humidity. Shortening due to shrinkage can be reduced by up to about one-half by means of temporary shrinkage joints.

Temperature:
In temperature effects, it is the temperature difference between the individual structural components and the differing coefficients of thermal expansion of the materials that are of greatest importance.
5.2.3. Practical conclusions
In slabs of more than 30 m length, a uniform, «homogeneous» deformation behaviour of the slabs and walls in the longitudinal direction should be aimed at. In open buildings with concrete walls or columns, this requirement is satisfied in regard to temperature effects and, provided the age difference between individual components is not too great, is also satisfied for shrinkage and creep.

In closed buildings with concrete walls or columns, a homogeneous behaviour for shrinkage and creep should be achieved. In respect of temperature, however, the concreted external walls behave differently from the internal structure. If cooling down occurs, tensile stresses develop in the wall. Distribution of the cracks can be ensured by longitudinal reinforcement. The tensile stresses may also be compensated for by post-tensioning the wall.

If, in spite of detail design measures, the absolute or relative longitudinal deformations exceed the admissible values, the building must be subdivided by joints.

Fig. 43 and 44 show, respectively, some examples in which joints can be dispensed with and some in which joints are necessary.

6. Construction procedures

6.1. General
The construction of a post-tensioned slab is broadly similar to that for an ordinarily reinforced slab. Differences arise in the placing of the reinforcement, the stressing of the tendons and in respect of the rate of construction.

The placing work consists of three phases: first, the bottom ordinary reinforcement of the slab and the edge reinforcement are placed. The ducts or tendons must then be positioned, fitted with supports and fixed in place. This is followed by the placing of the top ordinary reinforcement. The stressing of the tendons and, in the case of bonded tendons the grouting also, represent additional construction operations as compared with a normally reinforced slab.

Since, however, these operations are usually carried out by the prestressing firm, the main contractor can continue his work without interruption.

A feature of great importance is the short stripping times that can be achieved with post-tensioned slabs. The minimum period between concreting and stripping of formwork is 48 to 72 hours, depending upon concrete quality and ambient temperature. When the required concrete strength is reached, the full prestressing force can usually be applied and the formwork stripped immediately afterwards. Depending upon the total size, the construction of the slabs is carried out in a number of sections. The divisions are a question of the geometry of the structure, the dimensions, the planning, the construction procedure, the utilization of formwork material etc. The construction joints that do occur, are subsequently subjected to permanent compression by the prestressing, so that the behaviour of the entire slab finally is the same throughout.

The weight of a newly concreted slab must be transmitted through the formwork to slabs beneath it. Since this weight is usually less than that of a corresponding reinforced concrete slab, the cost of the supporting structure is also less.

6.2. Fabrication of the tendons

6.2.1. Bonded post-tensioning
There are two possible methods of fabricating cables:
- Fabrication at the works of the prestressing firm
- Fabrication by the prestressing firm on the site

The method chosen will depend upon the local conditions. At works, the strands are cut to the desired length, placed in the duct and, if appropriate, equipped with dead-end anchorages. The finished cables are then coiled up and transported to the site.

6.22. Unbonded post-tensioning
The fabrication of monostrand tendons is usually carried out at the works of the prestressing firm but can, if required, also be carried out on site. The monostrands are cut to length and, if necessary, fitted with the dead-end anchorages. They are then coiled up and transported to site. The stressing anchorages are then threaded through the anchorages.

6.3. Construction procedure for bonded post-tensioning
In slabs with bonded post-tensioning, the operations are normally carried out as follows:
1. Erection of slab supporting formwork
2. Fitting of end formwork; placing of stressing anchorages
3. Placing of bottom and edge reinforcement
4. Placing of tendons or, if applicable, empty ducts* according to placing drawing
5. Supporting of tendons or empty ducts* with supporting chairs according to support drawing
6. Placing of top reinforcement
7. Concreting of the section of the slab
8. Removal of end formwork and forms for the stressing block-outs
9. Stressing of cables according to stressing programme
10. Stripping of slab supporting formwork
11. Grouting of cables and concreting of block-outs

* In this case, the stressing steel is pushed through either before item 5 or before item 9.

6.4. Construction procedure for unbonded post-tensioning

If unbonded tendons are used, the construction procedure set out in Chapter 6.3. is modified only by the omission of grouting (item 11).

The most important operations are illustrated in Figs. 45 to 52. The time sequence is illustrated by the construction programme (Fig. 53).

All activities that follow one another directly can partly overlap; at the commencement of activity \((i+1)\), however, phase \((i-1)\) must be completed. Experience has shown that those activities that are specific to prestressing (items 4, 5 and 9 in Chapter 6.3.) are with advantage carried out by the prestressing firm, bearing in mind the following aspects:

6.4.1. Placing and supporting of tendons

The placing sequence and the supporting of the tendons is carried out in accordance with the placing and support drawings (Figs. 54 and 55). In contrast to a normally reinforced slab, therefore, for a post-tensioned slab two drawings for the prestressing must be prepared in addition to the reinforcement drawings. The drawings for both, ordinary reinforcement and posttensioning are, however, comparatively simple and the number of items for tendons and reinforcing bars is small.

The sequence in which the tendons are to be placed must be carefully considered, so that the operation can take place smoothly. Normally a sequence allowing the tendons

Table VI-Achievable accuracies in placing

<table>
<thead>
<tr>
<th>Direction</th>
<th>column strip</th>
<th>Remaining area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>± 5mm</td>
<td>± 5mm</td>
</tr>
<tr>
<td>Horizontal</td>
<td>± 20 mm</td>
<td>± 50 mm</td>
</tr>
</tbody>
</table>
to be placed without «threading» or «weaving» can be found without any difficulty. The achievable accuracies are given in Table VI.

To assure the stated tolerances, good coordination is required between all the installation contractors (electrical, heating, plumbing etc.) and the organization res-ponsible for the tendon layout. Corresponding care is also necessary in concreting.

6.4.2. Stressing of tendons
For stressing the tendons, a properly secured scaffolding 0.50 m wide and of 2 kN/m² load-bearing capacity is required at the edge of the slab. For the jacks used there is a space requirement behind the anchorage of 1 m along the axis and 120 mm radius about it. All stressing operations are recorded for each tendon. The primary objective is to stress to the required load; the extension is measured for checking purposes and is compared with the calculated value.
7. Preliminary design

In the design of a structure, both the structural design requirements and the type of use should be taken into account. The following points need to be carefully clarified before a design is carried out:

- Type of structure: car park, warehouse, commercial building, residential building, industrial building, school, etc.
- Shape in plan, dimensions of spans, column dimensions; the possibility of strengthening the column heads of a flat slab by drop panels
- Use: live load (type: permanent loads, moving loads, dynamic loads), sensitivity to deflection (e.g. slabs with rigid structures supported on them), appearance (cracks), vibrations, fire resistance class, corrosive environment, installations (openings in slabs).

For the example of a square internal span of a flat slab (Fig. 56) a rapid preliminary design will be made possible for the design engineer with the assistance of two diagrams, in which guidance values for the slab thickness and the size of the prestress are stated.

The design charts (Figs. 57 and 58) are based upon the following conditions:

1. A factor of safety of $y = 1.8$ is to be maintained under service load.
2. Under self-weight and initial prestress the tensile stress σ_{ct} for a concrete for which $f_{28} = 30 \text{ N/mm}^2$ shall not exceed 1.0 N/mm^2.
3. The ultimate moment shall be capable of being resisted by the specified minimum ordinary reinforcement or, in the case of large live loads, by increased ordinary reinforcement, together with the corresponding post-tensioning steel.

The post-tensioning steel (tendons in the span and over the columns) and the ordinary reinforcement are assumed as uniformly distributed across the entire span. The tendons are to be arranged according to Chapter 5.1. and the ordinary reinforcement according to Fig. 35. From condition 1, the necessary values are obtained for the prestress and ordinary reinforcement as a function of the slab thickness and span. Condition 2 limits the maximum admissible prestress. In flat slabs, the lower face in the column region is usually the determining feature. In special cases, ordinary reinforcement can be placed there. The concrete tensile stress σ_{ct} (condition 2) should then be limited to $\sigma_{ct} \leq 2.0 \text{ N/mm}^2$.

With condition 3, a guidance value is obtained for economic slab thickness (Fig. 57). It is recommended that the ratio l/h shall be chosen not greater than 40. In buildings the slab thickness should normally not be less than 160 mm. Fig. 57 and 58 can be used correspondingly for edge and corner spans.

Procedure in the preliminary design of a flat slab:

Given: span l, column dimensions, live load q

1. Estimation of the ratio $l/h \rightarrow$ self-weight g.
2. With ratio of service load $(g+q)$ to self-weight g and span l, determine slab thickness h from Fig. 57; if necessary correct g.
3. With l, h and $(g+q)/g$; determine transverse component from Fig. 58 and from this prestress; estimate approximate quantity of ordinary reinforcement.
4. Check for punching; if necessary flare out column head or choose higher concrete quality or increase h.

The practical execution of a preliminary design will be found in the calculation example (Chapter 8.2.).
8. Execution of the calculations

8.1. Flow diagram

8.2. Calculation example

8.2.1. Bases
- Type of structure: commercial building
- Geometry: see Fig. 59

- Loadings:
 - Live load \(p = 2.5 \text{ kN/m}^2 \)
 - Floor finishes \(g_B = 1.0 \text{kN/m}^2 \)
 - Walls \(g_w = 1.5 \text{kN/m}^2 \)
 - \(q = 5.0 \text{kN/m}^2 \)

- Material properties:
 - Concrete
 \(f_{c}^2 = 35 \text{ N/mm}^2 \)
 \(f_{cd} = 0.6 \cdot f_{c}^2 = 21 \text{ N/mm}^2 \)
 - Prestressing steel Monostrands \(\odot 15 \text{ mm (0.6")} \)
 \(A_p = 146 \text{ mm}^2 \)
 \(f_{py} = 1570 \text{ N/mm}^2 \)
 \(f_{pu} = 1770 \text{ N/mm}^2 \)
 \(E_p = 1.95 \cdot 10^5 \text{ N/mm}^2 \)
 very low relaxation (3%)
 - Admissible stresses:
 - at stressing: 0.75 \(f_{pu} \)
 - after wedge draw-in max. 0.70 \(f_{pu} \)
 Friction coefficients: \(\mu = 0.06 \)
 \(k = 0.0005 \text{/m} \)
 - Reinforcing steel
 \(f_{sy} = 460 \text{ N/mm}^2 \)
 - Concrete cover:
 \(c_p = 30 \text{ mm} \)
 \(c_s = 15 \text{ mm} \)
 - Long-term losses (incl. relaxation): assumed to be 10% (see Chapter 4.3.2.)

8.2.2. Preliminary design
— Determination of slab thickness:
 Assumption: \(I/h = 35 \)
 \(h = \frac{8.40}{35} = 0.24 \text{ m} \)

 \(g = 0.24 \cdot 25 = 6 \text{kN/m}^2 \)
 \(q = 5 \text{kN/m}^2 \)

 \(g+q = \frac{11}{6} = 1.83; \text{ hence from Fig. 57} \)

 \(h = \frac{8.40}{36} = 0.233 \text{ m} \)

 chosen: \(h = 0.24 \text{ m} \)

— Determination of prestress:
 a) Longitudinal direction:

 \(g+q = 1.83; \mu = 0.24 \cdot 1000 = 0.136; \)

 \(\frac{g}{6.40} = 25 \)

 hence from Fig. 58

 \(\nu = 1.39; u = 1.39 \cdot 6 = 8.34 \text{kN/m}^2 \)

 \(p = u \cdot h = \frac{8.34}{0.24} \)

 \(h_p = 0.144 \cdot 4.20^2 = 0.178 \text{ m (Fig. 60)} \)

 \(P = 8.34 \cdot 4.20^2 = 413 \text{kN/m} \)

 on 7.80 m width: \(P = 7.80 \cdot 413 = 3221 \text{kN} \)

 per strand: \(P_L = 146 \cdot 1770 \cdot 0.7 \cdot 10^{-3} = 181 \text{kN} \)

 Number of strands \(n_p = \frac{3221}{181} = 17.8 \)

 \(\rightarrow 18 \text{ monostrands } \odot 15 \text{ mm on 7.80 m width} \)

 on 7.40 m width: \(n_p = \frac{7.40}{7.80} \cdot 17.8 = 16.9 \)

 \(\rightarrow 17 \text{ monostrands } \odot 15 \text{ mm on 7.40 m width} \)
on 6.60 m width: \(n_p = \frac{6.60}{7.80} \cdot 17.8 = 15.1 \)

→ 16 monostrands 0 15 mm on 6.60 m width

on 2.40 m width: \(n_p = \frac{2.40}{7.80} \cdot 17.8 = 5.5 \)

→ 6 monostrands Ø 15 mm on 2.40 m width

b) Transverse direction:

\[g \times q = \frac{1.83 \times 1000}{7.80^2 \times 25} = 0.158 \]

hence from Fig. 58

\[\frac{u}{g} = 1.41, u = 1.41 \times 6 = 8.46 \text{kN/m}^2 \]

\[h_\nu = \frac{0.135 \times 7.80^2}{3.51} = 0.167 \text{ m} \] (Fig. 61)

\[P = \frac{8.46 \times 7.80^2}{8 \times 0.167} = 385 \text{ kN/m} \]

on 8.40 m width: \(P = 8.40 \times 385 = 3234 \text{ kN} \)

Number of strands: \(n_p = \frac{3234}{181} = 17.9 \)

→ 18 monostrands 0 15 mm on 8.40 m width

on 7.20 m width: \(n_p = \frac{7.20}{8.40} \cdot 17.9 = 15.3 \)

→ 16 monostrands 0 15 mm on 7.20 m width

- Determination of ordinary reinforcement:

 a) Top reinforcement:

 In the region of the punching cone:

 \(p_0 = 0.3\% \) (Fig. 35)

 Average of effective depth of reinforcement in both directions:

 \(d_{se} = 240 - 15 - 15 = 210 \text{ mm} \) (approx. value)

 Width \(b_{cd} \) (Fig. 30):

 \[b_{cd} = b_c + 3d_{se} = 450 + 3 \times 210 = 1080 \text{ mm} \]

 \[\rightarrow A_{ss} = 0.003 \times 210 \times 1080 = 680 \text{ mm}^2 \]

 chosen: 7 Ø 12 mm \((A_{ss} = 791 \text{ mm}^2) \)

 b) Column strip:

 \(p_e = 0.15\% \) (Fig. 35)

 Longitudinally:

 \[b_3 = 0.4 \times 7800 = 3120 \text{ mm} \]

 \[A_{sg} = 0.0015 \times 210 \times 2040 = 643 \text{ mm}^2 \]

 chosen: 6 Ø 12 mm \((A_{sg} = 678 \text{ mm}^2) \)
transversely:
\[b_t = 0.4 \times 8400 - 1080 = 2280 \text{ mm} \]
\[A_{bg} = 0.0015 \times 210 \times 2280 = 718 \text{ mm}^2 \]
chosen: \(4+4 \varnothing 12 \text{ mm} \) (\(A_{bg} = 904 \text{ mm}^2 \))

b) Bottom reinforcement:
- Internal spans: none
- Edge spans: \(p_b \geq 0.15 - 0.50 \cdot p_p \) (Formula 4.2.)

 longitudinally:
 \[p_p \geq \frac{np \cdot A_p}{dp \cdot b} = \frac{18 \cdot 146}{200 \cdot 7800} = 0.17\% \]
 \[\rightarrow p_p \geq 0.15 - 0.50 \cdot 0.17 = 0.065\% \]
 \[\rightarrow A_{p} \geq 0.065 \cdot 220 \cdot 10 = 143 \text{ mm}^2/m \]
chosen: \(\varnothing 6 \text{ mm}, \text{ spacing } 175 \text{ mm} \)

transversely:
\[\frac{p_p \geq 18 \cdot 146}{200 \cdot 8400} = 0.16\% \]
\[\rightarrow p_p \geq 0.07\% \]
\[\rightarrow A_{p} \geq 0.07 \cdot 220 \cdot 10 = 154 \text{ mm}^2/m \]
chosen: \(\varnothing 6 \text{ mm}, \text{ spacing } 175 \text{ mm} \)

Check for punching:
Determining column 1 (Fig. 62):
\[g+q = 11 \text{ kN/m}^2 \]
\[V_{g+q} = 11 \times 7.60 \times 8.60 = 719\text{kN} \]

Prestress:
50% within the critical shear periphery, i.e. 9 monostrands in each direction

Point of inflection:
According to Fig. 30 the point of inflection ideally lies at a distance \(d_s/2 \) from the column edge. In Figs. 60 and 61 it is assumed that the dimensions of the column are not yet known and the point of inflection is adopted at a distance 0.051 from the column axis (value from experience). In Fig. 62 the dimensions of the column have been established. Thus the real position of the point of inflection is known. The values given in Figs. 60 and 61 change accordingly (Fig. 63).

longitudinally:
\[\varphi_a = \frac{2 \cdot 13}{332} = 0.078 = \sin(\text{Fig. 63a}) \]
\[V_p = 2 \cdot 0.078 \cdot 181 \cdot 9 \cdot 0.9 = 229\text{kN} \]
(Factor 0.9=10% long-term losses)

transversely:
\[\varphi_a = \frac{2 \cdot 12}{332} = 0.072 = \sin(\text{Fig. 63b}) \]
\[V_p = 2 \cdot 0.072 \cdot 181 \cdot 9 \cdot 0.9 = 211 \text{ kN} \]
\[\Sigma V_p = 440 \text{ kN} \]
Figure 65: influence of wedge draw-in

- Transverse direction:
 Edge span: Cable position:
 \(h_p = \frac{6.60^2}{7.80^2} = 3.90^2 \times 118 \text{ mm} \)
 \(d_p = 240 - \left(\frac{1120 + 204}{2} - 118 \right) = 196 \text{ mm} \)
 \(\Delta \sigma_p = \frac{0.0147 \times 1.95 \times 10^5}{24.20} = 118 \text{ N/mm}^2 \)

 Internal span:
 \(\Delta l = 0.05 \times (0.025 \times 7.80 + 0.164) = 0.0282 \text{ m} \)
 \(\Delta \sigma_p = \frac{0.0262 \times 1.95 \times 10^5}{24.20} = 211 \text{ N/mm}^2 \)

- Check in longitudinal direction:
 Cable equipped with stressing anchorages at each end and stressed to 0.75 \(f_{pu} \) at each end.

 Influence of wedge draw-in of 6 mm (Fig. 65):
 \(w = \frac{\Delta l \times E_p \times A_p}{\Delta p} \)
 \(\Delta l = 0.006 \text{ m} \)
 \(E_p = 1.95 \times 10^8 \text{ kN/m}^2 \)
 Losses due to friction: 2.5% per 10 m (Chapter 4.1.3)
 \(\Delta p \)
 \(\frac{0.006 \times 1.95 \times 10^5}{0.75 \times 1.770 \times 10^3 \times 0.0025} = 18.78 \text{ m} \)

 Losses:
 \(x = 0 \text{ m} \)
 \(\Delta P = 2w \times 0.0025 \times P_o = 0.094 P_o \)
 \(x = 18.78 \text{ m} \)
 \(\Delta P = 2w \times 0.0025 \times P_o = 0.047 P_o \)
 \(x = 24.10 \text{ m} \)
 \(\Delta P = 2w \times 0.0025 \times P_o = 0.060 P_o \)
 \(\frac{1}{2} \times 18.78 \times 0.094 \times 2 + 24.10 \times 0.060 \)
 \(= 0.067 P_o \)

 Span I (Internal span):
 Ultimate strengths:
 Span:
 no ordinary reinforcement
 \(\sigma_{pu} = 1770 \times 0.75 \times 0.933 \times 0.9 = 1115 \text{ N/mm}^2 \)
 (Factor 0.9 = 10% long-term losses)
 \(\Delta \sigma_p = \frac{113 \text{ N/mm}^2}{24.10} \)
 \(\sigma_{pu} = \sigma_{pu} + \Delta \sigma_p = 1228 \text{ N/mm}^2 \)
 \((\pm 0.694 f_{pu}) \)
Figure 66: Tendon profile in transverse direction (edge span and cantilever)

\[Z_p = 396 \text{ kN/m} \]
\[x_c = 0.0236 \text{ m} \]
\[m_{uc} = 98.8 \cdot (0.207 - 0.012) + 396 \cdot (0.200 - 0.012) \]
\[m_{uc} = 93.9 \text{ kNm} \]

Ultimate load:

\[(q + \Phi_u) = \frac{8}{P^2} \cdot m_u \cdot \left(1 + \frac{\lambda}{2}\right) \] (Formula 3.7)
\[\lambda = \frac{93.9}{90.5} = 1.04 \]
\[(q + \Phi_u) = \frac{8 \cdot 90.5}{7.20^2} \cdot (1 + 0.52) = 21.2 \text{ kN/m} \]
\[y = \frac{21.2}{11} = 1.93 > 1.80 \]

Required safety thus achieved.

c) Check in transverse direction:
Cables equipped at one end with stressing anchorages and stressed there to 0.75 \(f_{pu} \). Average loss due to friction and wedge draw-in same as in longitudinal direction, since the transverse cables are of practically half the length of the longitudinal cables.

Span I:
Ultimate strengths:

Span:
no ordinary reinforcement
\[\sigma_p = 1115 \text{ N/mm}^2 \]
\[\Delta \sigma_p = 211 \text{ N/mm}^2 \]
\[\sigma_{pu} = 1326 \text{ N/mm}^2 \] (0.749 \(f_{pu} \))
\[Z_p = \frac{18 \cdot 1326 \cdot 146 \cdot 16 \cdot 10^{-3}}{8.40} = 415 \text{ kN/m} \]
\[x_c = \frac{415}{21 \cdot 10^{-3}} = 0.0198 \text{ m} \]
\[m_u = 415 \cdot (0.200 - 0.010) = 78.9 \text{ kNm} \]

Column:
oordinary reinforcement 7 \(\Omega \) 12 + 8 \(\Omega \) 12
\(\Rightarrow 791 + 904 = 1695 \text{ mm}^2 \)
\[A_s = \frac{1695}{8.40} = 202 \text{ mm}^2 / \text{m} \]
\[Z_s = 202 \cdot 460 \cdot 10^{-3} = 92.9 \text{ kN/m} \]
\[Z_p = 415 \text{ kN/m} \]
\[x_c = \frac{92.9 + 415}{21 \cdot 10^{-3}} = 0.0242 \text{ m} \]
\[m_{uc} = 92.9 \cdot (0.219 - 0.012) + 415 \cdot (0.190 - 0.012) \]
\[m_{uc} = 93.1 \text{ kNm} \]

Ultimate load:

\[\lambda = \frac{93.1}{78.9} = 1.18 \]
\[(q + \Phi_u) = \frac{8 \cdot 78.9}{7.80^2} \cdot (1 + 1.18) = 22.6 \text{ kN/m} \]
\[y = \frac{22.6}{11} = 2.05 > 1.80 \]

Required safety achieved.

Span III (Edge span):
Ultimate strengths:

Span:
oordinary reinforcement \(A_s = 162 \text{ mm}^2 / \text{m} \)
\[Z_s = 75 \text{ kN/m} \]
\[Z_p = 386 \text{ kN/m} \]
\[m_u = 88.6 \text{ kNm} \]

Ultimate load:

\[\lambda = \frac{87.9}{88.6} = 0.99 \]
\[(q + \Phi_u) = \frac{8 \cdot 88.6}{6.60^2} \cdot (1 + 0.49) = 24.2 \text{ kN/m} \]
\[y = \frac{24.2}{11} = 2.20 > 1.80 \]

Required safety achieved.

Span IV + Cantilever:
Cable position: The eccentricity \(e_c \) results from equating the transverse components in the cantilever and in the internal span (Fig. 66):
\[e_c = \frac{b^2 \cdot (4 \cdot e_r + 2 \cdot e_c)}{P^2 - 2 \cdot I_k} \]
\[e_r = 0.08 \text{ m} \]
\[e_c = 0.204 - 0.120 = 0.084 \text{ m} \]
\[I_k = 2.40 \text{ m} \]
\[e_c = \frac{2.40^2 \cdot (4 \cdot 0.08 + 2 \cdot 0.084)}{7.40^2 - 2 \cdot 2.40^2} = 0.065 \text{ m} \]
\[d_{pc} = \frac{0.065 \cdot 2.16^2}{2.40^2} \cdot \frac{1}{0.9} = 0.12 \cdot 0.178 \text{ m} \]

Ultimate strength:

Span:
oordinary reinforcement \(A_s = 162 \text{ mm}^2 / \text{m} \)
\[Z_s = 75 \text{ kN/m} \]
\[Z_p = 386 \text{ kN/m} \]
\[m_u = 88.6 \text{ kNm} \]

internal column:
\[m_{uc} = 87.9 \text{ kNm} \]
Figure 67: Tendon and reinforcement layout drawing
9. Completed structures

9.1. Introduction

In Chapters 9.2. to 9.11. ten projects are described in which post-tensioned slabs were used. They comprise structures covering a wide range of applications and geographical conditions. The post-tensioning in some of the slabs is bonded, in others unbonded. Thus a good overall view is obtained of the great variety of possible applications of post-tensioned slabs. In addition, the sequence of the descriptions is chronological, so that it is possible to follow the course of development over the last eight years. In Chapter 9.12. the main technical data of the ten structures are summarized in a table in order to enable an easy comparison.

9.2. Orchard Towers, Singapore

Client: Golden Bay Realty (Pte.) Ltd., Singapore
Architect: Chng Heng Tat & Associates, Singapore
Engineer: T.H. Chuah & Associates, Singapore
Contractor: Lian Hup Construction Co. Pte. Ltd., Singapore
Post-tensioning: VSL Systems Pte. Ltd., Singapore

Years of construction: 1972-74

Introduction

This high-rise project consists of two similar building complexes. Each comprises a more or less flat, rectangular lower section and a central, 24-storey block virtually square in plan. The front block contains spaces for shops and offices. The seven lower storeys of the rear block contain car parking areas, with flats in the multi-storey building above (Fig. 68).

Structural arrangement

In the front block the columns are generally arranged in a grid of 6.85 x 6.40 m. The slabs are flat, 180 mm thick and post-tensioned in both directions. In the storeys containing...
thanks to the use of post-tensioning. In the upper storeys the slabs are strengthened with post-tensioned edge beams, which assist in supporting the heavy facade cladding.

The column spacing in the rear building in the central part of the low structure and in the storeys of the high-rise section is 8.25 m in both directions. In the low structure the most economical arrangement proved to be a combined floor structure, namely low main beams in the transverse direction and thin flat slabs in the longitudinal direction. The depth of the slabs is 150 mm and that of the beams 380 mm. By the use of this shallow structural depth it was possible, without changing the overall height of the building, to incorporate a complete additional storey for car parking.

The slabs of the rear high-rise building are flat. Their thickness ranges from 150 to 200 mm. They are post-tensioned in both directions. Like the slabs of the low level portion, some of them possess fairly large cantilevers. The post-tensioning ensures the necessary limitation of deflections. As a result, problems such as those associated with service pipes etc. were largely eliminated. The advantages of post-tensioning in respect of watertightness of the concrete become evident in the roof slabs.

Construction

The slabs of the low buildings were each constructed in two sections, a system which favoured the construction program and the course of the other work. In the high-rise slabs, the construction program provided for the erection of one storey every fourteen days. After an initial phase, it was possible to reduce this cycle to 9 days. To permit early removal of formwork and thus a rapid resumption of work on the next slab, stressing was carried out in two stages and the formwork was transferred on the fourth or fifth day after concreting, i.e. at a concrete strength higher than 21 N/mm² (Fig. 69).

Post-tensioning

For all the slabs, bonded tendons were used. Each cable consists of four strands 9 13 mm (0.5”), lying in a flat duct and fitted with VSL anchorages. The service load per cable after deduction for all losses is 440 kN. The main beams in the rear low level building, which are 1.83 m wide, each contain 6 cables. In the slab, the tendons are almost uniformly distributed as the slabs cantilever out beyond the outermost columns. In this region it was possible to keep within the depth specified by the architect for the load-bearing structure.
9.3. Headquarters of the Ilford Group, Basildon, Great Britain

Client: Ilford Films, Basildon, Essex
Architect: Farmer and Dark, London
Engineer: Farmer and Dark, London
Contractor: Th. Bates & Son Ltd., Romford
Post-tensioning: Losinger Systems Ltd., Thame

Years of construction: 1974-75

Introduction
The Ilford Group has had a new Head Office building constructed at Basildon, to centralize its administration. The building comprises offices for 400 persons, a computer centre, a department for technical services (laboratories), conference rooms and a lecture hall. Building commenced in the middle of 1974. The work was completed only one year later (Fig. 73).

Structural arrangement
The building comprises three post-tensioned slabs with a total area of 7,480 m². The basement slab accounts for 1,340 m² and the two upper slabs for 3,070 m² each. The column spacing was fixed at 12 m in both directions; only the end spans are shorter (6.10 to 7.30 m). The slab over the ground floor cantilevers 0.40 m beyond the edge columns. All slabs are 300 mm thick. The internal columns are square. Their side dimension is 600 mm.

The lowest slab was designed for a live load (including partitions) of 8.5 kN/m², and the other two slabs for 5 kN/m². The detailed design was carried out on the basis of the technical report (then in draft) by the Concrete Society on «The design of post-tensioned flat slabs in buildings» (which, in the meantime, has been issued in a revised version [13]). The higher loading of the basement slab meant that it had to be strengthened at the column heads by flat drop panels of 2.60 m side dimension and 50 mm additional depth.

Post-tensioned flat slabs were chosen, because they proved to be cheaper than the originally intended, ordinarily reinforced waffle slabs of 525 mm depth. The difference in price for the slabs alone, i.e. without taking into account the effects on other parts of the structure, was more than 20% and was evident both in the concrete and in the reinforcement and formwork [44].

Construction
The slabs were divided into a total of seven sections. It was initially intended that these should be constructed at intervals of ten weeks each. By the use of sufficient formwork materials, however, the contractor was able to achieve an overlap of the cycles and thus more rapid progress. This was also necessary, because the construction programme was very tight, as Ilford had to leave their old offices by a specific date. The concrete used had to reach a strength $f_{cu} = 30$ N/mm² for the lower slab and of 30 N/mm² for the upper slabs.

The slabs had to be light, simple to construct and 50 mm additional depth. Post-tensioning was used. The slabs were post-tensioned with monostrands $\varnothing 15$ mm (0.6 in). The initial stressing force per strand was 173 kN, i.e. 0.70 f_{cu}. For the basement slab 70 strands were required per 12 m span and for the two upper slabs 60 strands. The strands were individually fitted with VSL anchorages; for practical reasons, however, they were combined into bundles of four.

The load balancing method [35] was used for determining the prestressing force. This force was selected so that the dead load and 10% of the live load were fully balanced by the transverse components from prestressing. Where the remainder of the live load led to tensile stresses, ordinary reinforcement was used. In the column region, stirrups were required to withstand the shear forces. This created some problems in the placing of the tendons.

The total quantity of prestressing steel required for all the slabs was about 300 metric tons.

9.4. Centro Empresarial, São Paulo, Brazil

Client: LUBECA S.A. Administração e Leasing, São Paulo
Architect: Escritório Técnico J.C. de Figueiredo Ferraz, São Paulo
Engineer: Escritório Técnico J.C. de Figueiredo Ferraz, São Paulo
Contractor: Construtora Alfredo Mathias S.A., São Paulo
Post-tensioning: Sistemas VSL Engenharia S.A., Rio de Janeiro

Years of construction: 1974-77

Introduction
The «Centro Empresarial» (the name means «Administrative Centre») is a type of office satellite town on the periphery of Sao Paulo. When completed it will comprise six multi-storey buildings, two underground car parks and a central building containing conference rooms, post office, bank branches, data processing plant and restaurants.

A start was made on the foundation work in September 1974. The first phase, i.e. approximately 2/3 of the centre, was completed at the beginning of 1977. There is at present no programme for the construction of the second stage.

Structural arrangement
The «Centro Empresarial» is divided structurally into three different parts: the multi-storey office buildings, the underground car parks and the central block. Each of the high buildings comprises eleven storeys (two of which are below ground), each of 53.50 x 53.50 m area. To provide for maximum flexibility in use of the available building surfaces a column spacing of 15 m was chosen. There are thus three spans of 15 m length in each direction in each slab, with a cantilever at each end of 4.25 m (Fig. 75).

The slabs had to be light, simple to construct and of minimum possible depth. For a live load of 5 kN/m², the best method of meeting these requirements was by using post-tensioning.

In order to find the most economic solution, a number of slab systems were compared: flat slab with hollow cores, one-way joisted beams, drop panel slab and waffle slab. The last-named type proved to be the most suitable for the multi-storey buildings. The slab depth was established at 400 mm, giving a slenderness ratio of 37.5. The slab itself is 60 mm thick, and the ribs which are spaced at 1.25 m between centres, are 170 mm wide. The main beams over columns are 2.50 m wide and give the structure great stiffness (Fig. 76).
The slabs of the two underground garages (four slabs each) are supported on a grid of 7.50 x 10.00 m. They are 180 mm thick **flat slabs** (Fig. 77). The uppermost slab of each garage, which has to carry a soil loading of 0.40 m, is 250 mm thick.

The building complex for the central services was designed as closely as possible along the same lines as the office towers. In the central block, ribbed slabs were adopted.

The design of the slabs was generally in accordance with the Brazilian prestressed concrete standard P-NB-116, in so far as it could be applied to post-tensioned slabs. The waffle slabs were designed on the method of equivalent frames. The flat slabs were designed by the load-balancing method.

Post-tensioning

For the waffle slabs, VSL cables of type 5-4 in flat ducts (that is **bonded post-tensioning**) were used. One such cable was necessary in each rib; in each column-line beam, 22 cables of this type had to be incorporated, equivalent to approximately 70% of the total prestress. Due to this high concentration, the cables had to be placed in two layers. By the use of the flat ducts, it was possible for the maximum eccentricity over the columns to be achieved however.

The cables were prefabricated in a hall on the site. Two or three strands were simultaneously unreeled from the coil by means of a VSL push-through machine and pushed directly into the duct. The tendons then had to be stored for a shorter or longer period since the demand for cables to be built in often fluctuated appreciably. The «cable factory» supplied up to 330 metric tons of cables in the peak months. The cables were coiled up for transport from the assembly hall to the place of installation. On the formwork they were unrolled in a sequence that had previously been tested with a model (Fig. 79). It had originally been intended to apply half the prestressing force three days after concreting and the full force after seven days.
This procedure was later modified to full stressing of most of the tendons after six or seven days. After the stressing operation had been carried out at both ends of the cable, the protruding strands were cut off and the anchorage block-outs concreted in. The cables were then grouted.

The post-tensioning operations commenced in February 1975 and lasted 17 months. During this period, 1,670 metric tons of prestressing steel and approximately 140 metric tons of anchorages were built into the 143,500 m² of slabs.

9.5. Doubletree Inn, Monterey, California, USA

Client: Doubletree Inc., Phoenix, Arizona
Architect: Kivett Myers, AIA, Kansas City, Missouri
Engineer: VSL Corporation, Los Gatos, California
Contractor: Baugh Construction, Seattle, Washington
Post-tensioning: VSL Corporation, Los Gatos, California
Years of construction: 1976-77

Introduction

The Doubletree Inn at Fisherman’s Wharf is a hotel comprising 374 guest rooms, conference rooms, restaurants, shops and a parking structure for 420 private cars (Fig. 80). The project almost failed to get built. The tender price for the original design, specified in reinforced concrete, was considerably above that which the client was prepared to pay. Other proposals also, including a variant involving prefabrication, were outside the stipulated limits. The VSL Corporation was consequently commissioned to look for possible savings. It proposed that post-tensioned, in-situ flat slabs should be used and the earthquake forces transmitted via the walls. This resulted in a cost reduction of more than half a millions US $ or of 20% in terms of the cost of the concrete frame itself. The VSL Corporation was subsequently awarded the contract for developing the design in detail and for supervising the entire civil engineering construction for the hotel and car parking.

Structural arrangement

The hotel comprises 24,150 m² of posttensioned slabs, and the car parking 9,750 m². In the hotel the spans and the slab depths vary considerably. In general the ratio span/slab depth is 44 to 45. The car parking is a three-storey building of dimensions 39 x 86 m. The spans here are usually 8.28 m, and the slab depths 190 mm (Fig. 81).

The slabs were designed in accordance with the American standards UBC 1970 and ACI 318-71, in conjunction with [12]. The live load assumed in the hotel area was from 1.9 to 4.8 kN/m². For the car parking, a live load of 1.4 kN/m² was adopted.

Post-tensioning

As is general in the USA, monostrands Ø 13 mm (0.5”) were used for this project also. The tendons were cut to length at works and delivered to the site rolled up. They were placed either by pulling the strand from the roll or by rolling them out. Tendons with intermediate stressing anchorages at the construction joints were hung rolled up from scaffolds until they could be extended further (Fig. 82).

The service load per monostrand after deduction for all losses is 0.60 fpu, i.e. 110 kN. To keep the frictional losses as low as possible, cables exceeding 30 m in length were stressed at both ends. The stressing operation was carried out at a concrete strength of 17.5 to 21.0 N/mm², that is at about 0.625 to 0.75 f–8.

9.6. Shopping Centre, Burwood, Australia

Client: Berbert Investment Co. Ltd., Sydney
Architect: Hely, Horne, Stuart & Perry, Milsons Point, N.S.W.
Engineer: Rankine -Hill Pty. Ltd., Sydney
Contractor: Concrete Constructions Pty. Ltd., Potts Point, N.S.W.
Post-tensioning: VSL Prestressing (Aust.) Pty. Ltd., Thornleigh, N.S.W.
Years of construction: 1976-78

Introduction

Burwood is a suburb of Sydney. The shopping centre, built there between May 1976 and October 1978, predominantly serves a large department store, but also comprises 68 specialist shops and three storeys with car parking places (Fig. 83).
Structural arrangement
The building comprises five storeys in total. It is 103 m long and 74 m wide. All the slabs (total area 28,500 m²) are posttensioned (bonded post-tensioning). The longitudinal column spacing is 4.04 - 12 · 7.90 - 4.04 m, the transverse spacing 4.65 - 8 · 8.40 m (Fig. 84). The slabs are 170 mm thick flat slabs, with main beams along the transverse column lines. The live load is generally 6 kN/m².

Post-tensioning
All the cables consist of four strands Ø13 mm (0.5”) and have an ultimate strength of 736 kN. The strands were pushed into the flat ducts (Fig. 86). In each of the main beams there are four cables; in each of the spans between them there are three tendons. The post-tensioning of the slab transversely to the main beams consists of uniformly distributed cables at 1.20 m spacing (Fig. 87). The total requirement for post-tensioning steel was almost 160 metric tons. 24 hours after each concreting operation, a partial prestress was applied, i.e. one strand of each 4-strand cable was fully stressed. After 36 hours, a second strand was fully stressed in the longitudinal direction, to permit the formwork to be transferred. After 7 days all the remaining strands were stressed (Fig. 88). Grouting of the cables was carried out from one day to eight weeks after stressing.

Construction
Rapid speed of construction was of the utmost importance in this project. VSL Prestressing Ltd. had already been brought in at an early stage, co-operating not only in developing the design for the project but also in planning the construction sequence and programming. It was therefore possible to adapt the design to suit the posttensioning and the formwork system. For the type of slab referred to, VSL Prestressing Ltd. had developed a special formwork system, which is especially applicable to regular, flat structures. The formwork panels are so constructed that they can be easily adapted to a column grid of 8 to 12 m (Fig. 85). The slabs for the shopping centre were constructed in a total of 28 stages. The two largest slabs, that over the basement and that over the ground floor, which both cover the entire building area, were each subdivided into eight sections.

9.7. Municipal Construction
Office Building, Leiden, Netherlands
Client Municipal Public Works of Leiden
Architect FA. Temme, City Architect, Leiden
Engineer Engineering Office van der Have, Rotterdam
Contractor IBB-KondorB.V., Leiden
Post-tensioning Civielco B.V., Leiden
Years of construction 1977-78

Introduction
In order to centralize different services and thereby improve co-operation, the town of Leiden decided to erect a new administrative building. On May 17, 1977 the first pile was officially driven. Towards the end of 1978 the structure was completed and on February 12, 1979, i.e. exactly 50 years after the
Figure 89: The finished Municipal Construction Office Building

Figure 90: Section of the building

Figure 91: The building during construction

Figure 92: Plan of the underground parking

Structural arrangement

The building forms a group around three sides of an inner courtyard. It comprises a basement for bicycles and four aboveground storeys (Fig. 90). Its shape in plan is quite complicated and is an expression of individualistic architecture.

The ground floor slab (area 2,000 m²) consists of prefabricated elements supported on beams. The other slabs (flat slabs) were constructed of post-tensioned, in-situ concrete,
unbonded post-tensioning being used. The column spacing in both directions is alternately 7.20 and 3.60 m. All slabs are 240 mm thick. They are strengthened in the column head regions. The live load varies, but on average is about 4 kN/m².

Each slab consists of three independent parts, separated by expansion joints. In construction (Fig. 91), the larger parts were subdivided into sections of about 350 m² to permit rational use of the formwork. The influence of horizontal movements (stressing, creep and shrinkage) on the slabs was limited by forming the connection with the stiff cores subsequently.

The slabs were not designed for carrying the concrete weight of the slab above. This was therefore transferred in every case to two lower slabs. To achieve rapid construction, it was necessary to apply the prestress as quickly as possible. Partial stressing was carried out three days and full stressing about 14 days after concreting.

Post-tensioning

The prestressing consists of monostrands ∅ 13 mm (0.5") of 184 kN ultimate load. These were cut to length on site, fitted with anchorages and transferred in bundles by the crane onto the formwork. Placing of the monostrands and ordinary reinforcement of a 350 m² section required approximately three days. In total, some 6,000 m² of slab area was post-tensioned, requiring approximately 37 metric tons of prestressing steel.

9.8. Underground garage for ÖVA Brunswick, FR Germany

Client Öffentliche Versicherungs-Anstalt, Brunswick

Architect Laskowski and Schneidewind, Brunswick

Engineer Office of Meinecke & Dr. Odewald, Brunswick

Contractor Telge & Eppers, Brunswick

Post-tensioning SUSPA Spannbeton GmbH, Langenfeld

Year of construction 1979

Introduction

In the course of extending its buildings, ÖVA Brunswick had a single-storey, underground car park for 99 private cars constructed inside already existing buildings. The roof of the structure, of area approximately 2,290 m², consists of a post-tensioned flat slab.

for which **unbonded post-tensioning** was used. This was the **frist time** a partially post-tensioned flat slab with unbonded tendons was carried out in the **FR Germany** [46].

Construction of the slab took place during the Summer of 1979. On account of the high groundwater level, the floor of the car park was to be kept as
high as possible, to avoid expensive watertight tanking and drainage during construction. Therefore, after an ordinarily reinforced slab 500 mm thick had initially been designed, an alternative solution in post-tensioned concrete was developed, which provided a reduction in slab depth of 150 mm and the saving of two column axes accompanied by an increase in spans from 5.0 to 7.5 m. The post-tensioned slab was also satisfactory from the economic aspect.

Structural arrangement
The slab, of total length 86.50 m and width 18.20 and 33.50 m respectively, is divided by permanent joints into three sections. The spans of the internal bays vary longitudinally between 5.00 and 7.50 m, and transversely between 7.10 and 8.75 m. The edge spans range from 4.40 to 5.00 m. The slab depth is 350 mm (Fig. 92).

The slab was designed for a soil overburden of 0.40 m (7.5 kN/m²) and a heavy goods vehicle of class SLW 30 (equivalent loading 11.8 kN/m²), since the slab was located partly beneath a road. Account had to be taken of additional loads in individual spans. The design method adopted was not in accordance with DIN 4227, Part 1, the standard that was then in general use for post-tensioned structures, and it was also not yet possible to base the design upon Part 6 «Components with unbonded post-tensioning» [15], which was in preparation. A uniform balancing loading of 16.3 kN/m² was assumed, i.e. self-weight plus soil overburden including road pavement.

At that time there was also no general approval issued for the VSL monostrand tendon*. An agreement was therefore required for the particular case, and this was granted by the Responsible Authority for Construction of Lower Saxony, on the recommendation of the Institut für Bautechnik, Berlin.

Construction
Formwork erection, reinforcement placing and concreting were carried out for the three parts of the slab in succession (Figs. 93 and 94). The tendons were cut to length at works, fitted with the dead-end anchorage and rolled up. During placing they were unrolled, starting from the deadend anchorage, and were pushed through the stressing anchorages fixed to the formwork. Two, three or four strands were combined together into bundles.

Four or five days after concreting the strands were stressed in one stage to 0.75 fₚ and anchored at 0.70 fₚ. This steel stress exceeds the value of 0.55 fₚ until now generally the maximum allowed in post-tensioned concrete in the FR Germany. This value, however, is to be increased in the near future. In [15] the increased value was already adopted for unbonded post-tensioning as this method would have been at an economical disadvantage against bonded. post-tensioning [47]. After stressing the protruding ends of the strands were cut off, the stressing anchorages closed with a grease-filled plastics cover, and the block-outs filled with mortar.

Post-tensioning
The tendons used consist of monostrands ø 15 mm (0.6”), each of 140 mm² cross-sectional area and 247.8 kN ultimate load. Placing of the strands was carried out by three to four operatives. This work and the placing of the top reinforcement was carried out for an equivalent of 1,000 m² slab area in approximately 7 working days. 7.3 kg of prestressing steel and 18.3 kg of ordinary reinforcement were required per m² slab.

9.9. Shopping Centre, Oberes Murfeld / Wittigkofen, Berne, Switzerland
Client Kleinform Geschäftshäuser AG, Berne
Architect Joint Venture Thomann & Nussli AG, Berne / 0. Senn, Basle
Engineer Engineering office Walder AG, Berne
Contractor General contractor LOSAG AG, Berne
Building contractor Losinger AG, Berne
Post-tensioning VSL INTERNATIONAL LTD. (formerly Spannbeton AG)
Year of construction 1979

Introduction
The building complex serves as a shopping centre for the new development of Oberes Murfeld/Wittigkofen at the periphery of the city of Berne. It comprises various shops, a restaurant, several storage areas, a car parking hall and an office floor.

Structural arrangement
The building comprises three storeys, the two lower ones of reinforced/post-tensioned concrete and the upper in structural steel framing. The slabs over the basement and ground floor are flat slabs with unbonded post-tensioning. The column spacing longitudinally is 13 x 5.00 m and transversely 4.25 - 5 x 8.50 - 4.25 m. In axis 7, the slabs are divided in the transverse direction by expansion joints. In total, 4,657 m² of slab were post-tensioned. Both concrete slabs are 240 mm thick. The slab over the basement can carry a live load of 5 kN/m² and that over the ground floor a live load of 3 kN/m². The connection between the slabs and the load-bearing walls and columns is monolithic (Figs. 95 and 96).

Construction
Each slab was constructed in three sections. Sections I and II were separated by a construction joint, sections I and III by the expansion joint (Fig. 95). The sub-dividing made possible a rational use of formwork and rapid construction progress. This was of great importance, since the construction of the entire shopping centre was subject to a very tight construction schedule. 5½ months after commencement of excavation the greater part of the building was to be handed over to the client. It was possible to achieve this date, thanks not least to the choice of post-tensioned flat slabs. Only 14 weeks were required for the construction of the slabs.

The average working times per slab section, after erection of formwork, were:
- 1 day for placing the bottom reinforcement, which was of mesh throughout and only required local additional reinforcement,
- 2 days for placing the tendons,
- 1 day for placing the top reinforcement.

* In the meantime this approval has been granted.
These operations were carried out with some overlap. Only 4 days after concreting full stressing could be applied. For this, a concrete strength of 22.6 N/mm² was required.

The tendons were cut to length at works, fitted with the dead-end anchorages and transported to site rolled up. Strands and bundles of the same length were identified by the same colour. At the intermediate anchorage locations, the tendons were temporarily stored resting on a 3.5 m wide formwork overhang (Fig. 97).

Post-tensioning

The choice of post-tensioning by areas gave not only the most economic solution but also that with the minimum slab thickness and minimum deflections. Monostrands Ø15 mm (0.6") of 146 mm² cross-section and 257.8 kN ultimate strength were used for the tendons. In total, 21 metric tons of prestressing steel, 596 stressing anchorages, 596 dead-end anchorages and 138 intermediate stressing anchorages were required. Along the column lines, two and
three strands were combined into bundles. Between them, single strands are uniformly distributed (spacing approx. 0.60 and 1.00 m respectively). The requirement for prestressing steel in the lower slab was 4.7 kg/m², in the upper 4.6 kg/m². The corresponding figures for the ordinary reinforcement are 9.5 and 7.9 kg/m² (Figs. 98 and 99).

9.10. Underground garage
Oed XI, Linz, Austria

Client: Wohnungsaktiengesellschaft Linz
Architect: Franz Reitzenstein, Salzburg
Engineer: Hellmut Preisinger, Linz
Contractor: Josef Pirkl & Georg Eysert, Linz
Post-tensioning: Sonderbau GesmbH, Vienna

Years of construction: 1979-80

Introduction
The single-storey, soil covered underground car park forms part of a development in a suburb of Linz. It provides places for approximately 110 private cars. A cost comparison prepared during optimization of the slab gave a price advantage for the post-tensioned solution over reinforced concrete. Construction was carried out between November 1979 and May 1980.

Structural arrangement
The slab is 75.30 m long and 33.90 m wide. It contains no permanent joints. Longitudinally, the spans are 7.65 - 8 x 7.50 - 7.65 m, and transversely 4.85 - 8.05 - 8.10 - 8.05 - 4.85 m. The slab is flat, 300 mm thick and is strengthened at each column with a square drop panel of 2.20 m side dimension and an additional 300 mm depth, since due to the high loading punching shear was the determining factor. The column dimensions are 0.25 x 0.60 m. The applied load is composed of 0.60 m backfill (10 kN/m²) and a live load of 5 kN/m². The slab and side walls are connected together monolithically.

Construction
The slab, which is post-tensioned with bonded tendons, was constructed in three sections. After placing of the bottom reinforcement, consisting of mesh, the ducts were made up from 10 m lengths, placed at the specified sequence and fixed to the anchorages. Pushing-through of the strand was then carried out. After they had been assembled, the tendons were equipped with the necessary supports beneath (concrete blocks and stirrups). The tendons were fixed laterally by attaching the supports to the bottom mesh reinforcement (Fig. 100). Finally, the top reinforcement above the columns was placed. Ten days after concreting the cables were stressed.

Post-tensioning
Since there was not sufficient time to go through an approval procedure for unbonded tendons, grouted VSL cables, type 5-4, of 699 kN ultimate strength each were used. The four strands of each tendon are laid in a flat duct. The transverse cables have stressing anchorages at both ends. The continuous cables in the longitudinal direction also have stressing anchorages at both ends, with couplers between them at each construction joint. In the two end spans, additional cables were necessary; these have buried dead-end anchorages type H (Figs. 101 and 102).

9.11. Multi-storey car park,
Saas-Fee, Switzerland

Client: Community of Saas-Fee
Engineer: Schnellere+Scheidmihalter+Ritz, Brig
Contractor: Anthamatten&Kaibermatten AG, Saas-Fee
Post-tensioning: VSL INTERNATIONAL LTD. (formerly Spannbeton AG)

Years of construction: 1979-80

Introduction
Saas-Fee, a well-known Summer and Winter resort in the Alps of the Valais, is about 1800 m above sealevel and can only be reached by road. The ever-increasing number of holiday-makers who bring their own cars and the shortage of parking places especially in winter led the local community authorities to construct an 8-storey car park containing approximately 950 parking spaces (Fig. 103). Construction commenced in October 1979. The construction period was about one year.

Two different supporting systems were specified in the invitation for tenders. One variant consisted of a completely prefabricated solution with in-situ concrete over the slab elements. The other proposal was based upon a monolithic in-situ concrete design with post-tensioned flat slabs. This proved to be economically and technically superior.

Structural arrangement
The car park is an open, unheated building with ventilation. It is 83.3 m long, 34.8 m wide and 25.5 m high. The column spacing is a uniform 7.50 m in the longitudinal direction. Transversely, the spacings are 4.50 – 7.60 – 2x4.765 – 7.60 – 4.50 m. The core containing the staircase and the lift shafts is located virtually at the centre. This core, together with cross-beams connecting the slabs to the end supporting walls, assures the horizontal stability of the structure (Figs. 104 to 106).
In the end spans and in the central span, the slabs are horizontal; in between, they have a 4.5% gradient in the longitudinal direction, thus serving also as ramps. This form of structure results in a separation over 2 x 4 spans along the longitudinal axis of each floor.
The seven lower slabs are 200 mm thick. They are designed for a live load of 2 kN/m². The loading of the roof slab is composed at a maximum of the snow load of 11.5 kN/m² and a roof garden of 4 kN/m². The thickness of the roof slab is therefore 250 to 400 mm.

The high loading also necessitated strengthening at the column heads. It was possible to dispense with expansion joints in all the slabs.

Construction
Due to its high elevation, Saas-Fee has a long winter season in which no construction work is possible. In addition, sudden cold spells and falls of snow must be expected in spring and autumn. Only the period from the end of May to the middle of October 1980 was therefore available for building the main structure. This meant that on average one half slab (area 1,450 m²) together with the associated columns and walls had to be erected each week. Furthermore, due to reasons associated with formwork and post-tensioning, the half slabs at the uphill side always had to be two storeys in advance (Fig. 107).

The required minimum concrete strength for stressing was reached normally three days after concreting. One half slab could therefore be fully stressed each Tuesday and the formwork then stripped from it.

Post-tensioning
The slabs were designed on the principles for unbonded post-tensioning set out in this document. The monostrands used are of nominal diameter 15 mm (0.6") have a cross-section of 146 mm² and an ultimate strength of 257.8 kN. 50% of the tendons are located in the column lines, 50% in the span. Some of the tendons over the columns are formed into bundles of two.

In the longitudinal direction, the strands were divided by a non-stressed inter-media.
anchorage into sections of 46.3 and 37 m length. This enabled a reduction in the free strand length to be achieved with a corresponding increase in the ultimate strength. The ends of all the monostrands in the longitudinal direction are fitted with VSL stressing anchorages. The strands in the transverse direction also utilize intermediate anchorages in the horizontal areas of the slabs. These anchorages are, however, located at the construction joints and therefore served as stressing anchorages (Fig. 109). The remaining transverse strands have a deadend anchorage at one end and stressing anchorages at the other.

In the seven lower slabs, the quantity of post-tensioning steel is 3.7 kg/m², and in the roof slab it is 6.0 kg/m². The quantities of ordinary reinforcement required were 6.4 kg/m² and 12 kg/m² respectively (including 1 kg/m² fixing steel for the tendons in each case). This low reinforcement content is explained by the fact that no bottom reinforcement was necessary in the internal spans.

9.12. Summary

Some important data for the slabs described in Chapters 9.2. to 9.11. are summarized in Table VII. When a comparison is being made between the values, it must be remembered however that different standards were used for different projects and the design methods have progressively developed in the course of time.

Table VI I - Main data of the structures described in Chapters 9.2. to 9.1 1.
10. Bibliography

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_p</td>
<td>Cross-sectional area of post-tensioning steel</td>
</tr>
<tr>
<td>A_{pc}</td>
<td>Cross-sectional area of post-tensioning steel at column</td>
</tr>
<tr>
<td>A_{pf}</td>
<td>Cross-sectional area of post-tensioning steel in span</td>
</tr>
<tr>
<td>A_s</td>
<td>Cross-sectional area of ordinary reinforcement</td>
</tr>
<tr>
<td>A_{sc}</td>
<td>Cross-sectional area of ordinary reinforcement at column</td>
</tr>
<tr>
<td>A_{sf}</td>
<td>Cross-sectional area of ordinary reinforcement in span</td>
</tr>
<tr>
<td>A_{sg}</td>
<td>Cross-sectional area of ordinary reinforcement in column strip</td>
</tr>
<tr>
<td>A_{ss}</td>
<td>Cross-sectional area of ordinary reinforcement in column line</td>
</tr>
<tr>
<td>C</td>
<td>Concrete grade (20 = f<sub>cd</sub>)</td>
</tr>
<tr>
<td>D</td>
<td>Compressive force</td>
</tr>
<tr>
<td>E</td>
<td>Modulus of elasticity</td>
</tr>
<tr>
<td>E_c</td>
<td>Modulus of elasticity of concrete</td>
</tr>
<tr>
<td>E_{pc}</td>
<td>Reduced modulus of elasticity of concrete</td>
</tr>
<tr>
<td>E_p</td>
<td>Modulus of elasticity of prestressing steel</td>
</tr>
<tr>
<td>F</td>
<td>Fire resistance class (60 = fire resistance time in minutes)</td>
</tr>
<tr>
<td>I</td>
<td>Second moment of a plane area</td>
</tr>
<tr>
<td>L</td>
<td>Free length of tendon between two anchorages</td>
</tr>
<tr>
<td>M_q</td>
<td>Moment due to distributed permanent load</td>
</tr>
<tr>
<td>M_t</td>
<td>Moment due to distributed variable load</td>
</tr>
<tr>
<td>M_u</td>
<td>Ultimate resistance moment</td>
</tr>
<tr>
<td>P</td>
<td>Post-tensioning force</td>
</tr>
<tr>
<td>P_x</td>
<td>Post-tensioning force per strand</td>
</tr>
<tr>
<td>P_0</td>
<td>Post-tensioning force at stressing anchorage prior to wedge draw-in</td>
</tr>
<tr>
<td>P_x^o</td>
<td>Post-tensioning force at point x</td>
</tr>
<tr>
<td>R</td>
<td>Ultimate strength of the cross-section</td>
</tr>
<tr>
<td>R_d</td>
<td>Design value for ultimate strength of cross-section</td>
</tr>
<tr>
<td>S</td>
<td>Moments and shear forces due to applied loads</td>
</tr>
<tr>
<td>V_g</td>
<td>Column load due to dead load</td>
</tr>
<tr>
<td>V_{g+q}</td>
<td>Column load due to dead load plus live load</td>
</tr>
<tr>
<td>V_p</td>
<td>Transverse component from prestressing inside the critical shear periphery</td>
</tr>
<tr>
<td>V_{p-cp}</td>
<td>Transverse component from prestressing inside the critical shear periphery at time $t = \infty$ (after deduction of all losses)</td>
</tr>
<tr>
<td>V_g</td>
<td>Column load due to live load</td>
</tr>
<tr>
<td>V_u</td>
<td>Punching resistance force (failure)</td>
</tr>
<tr>
<td>W_e</td>
<td>Virtual work of applied forces</td>
</tr>
<tr>
<td>W_i</td>
<td>Virtual work of internal forces</td>
</tr>
<tr>
<td>Z_p</td>
<td>Tension force at support</td>
</tr>
<tr>
<td>Z_{pc}</td>
<td>Tension force due to post-tensioned reinforcement</td>
</tr>
<tr>
<td>Z_{pf}</td>
<td>Tension force due to ordinary reinforcement</td>
</tr>
<tr>
<td>a</td>
<td>Deflection</td>
</tr>
<tr>
<td>a_{d-u}</td>
<td>Deflection due to permanent load minus transverse component from prestressing</td>
</tr>
<tr>
<td>a_{g+q-d}</td>
<td>Deflection due to cracking load minus permanent load</td>
</tr>
<tr>
<td>a_{g-q}</td>
<td>Deflection due to cracking load minus portion of live load</td>
</tr>
<tr>
<td>a_u</td>
<td>Limit deflection</td>
</tr>
<tr>
<td>b</td>
<td>Width</td>
</tr>
<tr>
<td>b_{cd}</td>
<td>Column dimension (width, diameter)</td>
</tr>
<tr>
<td>b_{cd}</td>
<td>Width of punching cone</td>
</tr>
<tr>
<td>b_{ck}</td>
<td>Width of column line</td>
</tr>
<tr>
<td>b_g</td>
<td>Width of column strip</td>
</tr>
<tr>
<td>c_p</td>
<td>Concrete cover to post-tensioned reinforcement</td>
</tr>
<tr>
<td>c_s</td>
<td>Concrete cover to ordinary reinforcement</td>
</tr>
<tr>
<td>d</td>
<td>Permanent load</td>
</tr>
<tr>
<td>d_p</td>
<td>Effective depth of post-tensioned reinforcement</td>
</tr>
<tr>
<td>d_{pc}</td>
<td>Effective depth of post-tensioned reinforcement at column</td>
</tr>
<tr>
<td>d_{pf}</td>
<td>Effective depth of post-tensioned reinforcement in span</td>
</tr>
<tr>
<td>d_s</td>
<td>Effective depth of ordinary reinforcement</td>
</tr>
<tr>
<td>d_{sc}</td>
<td>Effective depth of ordinary reinforcement at column</td>
</tr>
<tr>
<td>d_{sf}</td>
<td>Effective depth of ordinary reinforcement in span</td>
</tr>
<tr>
<td>e</td>
<td>Base of Napierian logarithms</td>
</tr>
<tr>
<td>e_c</td>
<td>Eccentricity of the parabola of post-tensioned reinforcement at column</td>
</tr>
<tr>
<td>e_f</td>
<td>Eccentricity of the parabola of post-tensioned reinforcement at centre of span</td>
</tr>
<tr>
<td>e_q</td>
<td>Eccentricity of the parabola of post-tensioned reinforcement in cantilever</td>
</tr>
<tr>
<td>e_p</td>
<td>Average eccentricity of post-tensioned reinforcement (average of both directions)</td>
</tr>
<tr>
<td>f_c</td>
<td>Compressive strength of concrete (cube, prism or cylinder strength, depending upon country)</td>
</tr>
<tr>
<td>f_{cd}</td>
<td>Compressive strength of concrete at 28 days</td>
</tr>
<tr>
<td>f_l</td>
<td>Design value for compressive strength of concrete</td>
</tr>
<tr>
<td>f_{tc}</td>
<td>Tensile strength of concrete</td>
</tr>
<tr>
<td>f_{pu}</td>
<td>Characteristic strength of post-tensioning steel</td>
</tr>
<tr>
<td>f_{py}</td>
<td>Yield strength of post-tensioning steel</td>
</tr>
<tr>
<td>f_s</td>
<td>Characteristic strength of reinforcing steel</td>
</tr>
<tr>
<td>f_{sy}</td>
<td>Yield strength of reinforcing steel</td>
</tr>
<tr>
<td>g</td>
<td>Self-weight of slab $(y_c \cdot h)$</td>
</tr>
<tr>
<td>g_{u}</td>
<td>Ultimate design load</td>
</tr>
<tr>
<td>g_{su}</td>
<td>Distributed weight of slab surfacing</td>
</tr>
<tr>
<td>g_{w}</td>
<td>Distributed load due to weight of walls</td>
</tr>
<tr>
<td>h</td>
<td>Slab thickness</td>
</tr>
<tr>
<td>h_p</td>
<td>Sag of tendon parabola</td>
</tr>
<tr>
<td>k</td>
<td>Wobble factor</td>
</tr>
<tr>
<td>l</td>
<td>Length of span</td>
</tr>
<tr>
<td>l_1</td>
<td>Length of span 1</td>
</tr>
<tr>
<td>l_2</td>
<td>Length of span 2</td>
</tr>
<tr>
<td>m_{\min}</td>
<td>Smallest negative moment over column with adjoining cantilever</td>
</tr>
<tr>
<td>m_u</td>
<td>Plastic moment (in span)</td>
</tr>
<tr>
<td>m_{uc}</td>
<td>Plastic moment at column</td>
</tr>
<tr>
<td>n</td>
<td>Lateral membrane force per unit width</td>
</tr>
<tr>
<td>n_p</td>
<td>Number of tendons</td>
</tr>
<tr>
<td>q</td>
<td>Distributed variable load</td>
</tr>
<tr>
<td>q_c</td>
<td>Proportion of distributed variable load in cracking load</td>
</tr>
<tr>
<td>r_o</td>
<td>Radius of curvature</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>u</td>
<td>Transverse component from prestressing per length unit</td>
</tr>
<tr>
<td>u_c</td>
<td>Smallest convex envelope which is completely surrounding the column at a distance of $d_s/2$</td>
</tr>
<tr>
<td>w</td>
<td>Influence length of wedge draw-in</td>
</tr>
<tr>
<td>x</td>
<td>Distance</td>
</tr>
<tr>
<td>α</td>
<td>Angle of deviation of the tendons</td>
</tr>
<tr>
<td>β</td>
<td>Ratio, coefficient</td>
</tr>
<tr>
<td>γ</td>
<td>Safety factor</td>
</tr>
</tbody>
</table>
Definitions

Slab: Plate in the form used in building construction as load-bearing element in every storey or as roof.

Flab slab: Slab with parallel top and bottom faces.

One-way foisted slab: Flat slab reinforced on its lower face at uniform intervals by ribs running in one direction only.

Waffle slab: Flat slab reinforced on its lower face by ribs in orthogonal pattern.

Main beams: Relatively broad beams of shallow depth which reinforce a slab along the column axes. They may be arranged in only one direction or orthogonally.

Plate: Flat, more or less horizontal panel which is supported at at least three points or two opposite lines.

Tendon, cable: Prestressing cable consisting of one or more strands, which may be grouted or ungrouted.

Monostrand: Prestressing cable consisting of one strand which is not grouted.

Bundle: Several monostrands bundled together.

Extruding: The process of applying the grease layer and plastics sheath onto a bare strand for producing monostrands.

Design calculation: Determination by calculation of the stresses and loads of a structure.

Detailed design: Determination of the dimensions of the load-bearing structure and its components on the basis of the design calculation.

Ultimate load: The load at which failure of the structural element just takes place.

Under-reinforced: Said of a cross-section, in which the proportion of reinforcement is sufficiently low for failure always to be initiated by yield of the steel.

Precompressed tensile zone: Zone subjected to tensile stresses in service state but under compression immediately after stressing of tendons.

Column head strengthening: Strengthening of a column directly below the slab to increase the resistance to punching. The strengthening consists either of a uniform thickening of the slab in the region of the column or of a mushroom-shaped flaring of the column at the top.

Column strip: Strip-shaped portion of a slab, the longitudinal axis of which coincides with the column axis.

Column line: Strip-shaped portion of a slab, the longitudinal axis of which coincides with the column axis and the width of which is given by the critical shear periphery.

Wedge draw-in: The movement of the wedges during the anchoring operation, in which the wedges press into the strands and consequently draw in through a small distance in the bore of the anchorage until they jam. The movement results in a corresponding loss of prestressing force.

Dimensional units

In this report units of the SI system are exclusively used (mm, m, N, kN, N/mm², kN/m²). Weights are given in kilogram (kg) or metric tons (t). Formulæ which were originally obtained in another system have been converted to the SI system.

Signs

The following sign rules are used:

- Compressive force, compressive stress: -
- Tension force, tensile stress: +

- Moments:
 - when the upper fibre of the cross-section is tensioned: -
 - when the lower fibre of the cross-section is tensioned: +

- Shortening: -
- Lengthening: +
Appendix 2: Summary of various standards for unbonded post-tensioning

<table>
<thead>
<tr>
<th>Standard</th>
<th>Code</th>
<th>Type of System</th>
<th>Tolerance to be Eliminated</th>
<th>Tensioning Force</th>
<th>Bursting Force</th>
<th>Creep and Shrinkage</th>
<th>Steel Modulus of Elasticity</th>
<th>Service Load</th>
<th>Ultimate Load</th>
<th>Fatigue Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI 318-13</td>
<td>Sec. 9.4.5</td>
<td>Control Stresses Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN 1994-2:2004</td>
<td></td>
</tr>
<tr>
<td>EN 1994-2:2004</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above provides a summary of various standards for unbonded post-tensioning. Each column represents a different parameter or aspect of the standard. Further details are available within the respective standards.
HEADQUARTERS

VSL International Ltd.
Benstrasse 9
LYSACH - CH 3421
Switzerland
Phone: 41 - 34 - 447 99 11
Fax: 41 - 34 - 445 43 22
http://www.vsl-intl.com

YOUR POST TENSIONING SPECIALIST CONTRACTOR

<table>
<thead>
<tr>
<th>Region</th>
<th>Office</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>South East Asia/Australia (Operating Unit 1)</td>
<td>Regional Office</td>
<td>VSL Prestressing (Aust.) Pty. Ltd. 6 Pioneer Avenue THORNLEIGH, NSW 2120 Australia Phone: 61 - 2 - 9848 54 44 Fax: 61 - 2 - 9875 38 94</td>
</tr>
<tr>
<td>North East Asia (Operating Unit 2)</td>
<td>Regional Office</td>
<td>VSL North East Asia 1508 Devon House 979 King’s Road - Ovanr Bay HONG KONG Phone: 852 - 2590 22 22 Fax: 852 - 2590 95 93</td>
</tr>
<tr>
<td>USA - North America (Operating Unit 3)</td>
<td>Regional Office</td>
<td>VSL Corporation Crosspointe 11 Plaza 2840 Plaza Place - Suite 200 RALEIGH, NC 27612 USA Phone: 1 - 919 - 781 6272 Fax: 1 - 919 - 7816892</td>
</tr>
<tr>
<td>Europe, Middle East, South America and Africa (Operating Unit 4.5)</td>
<td>Regional Office</td>
<td>VSL Corporation Quarry Bay 97868 MASSY Cedex France Phone: 33 - 1 - 6919 43 16 Fax: 33 - 1 - 69 19 43 17</td>
</tr>
<tr>
<td>Australia - New South Wales</td>
<td>VSL Prestressing (Aust.) Pty. Ltd. 84 - 4 - 8245 717 Quarry Bay Phone: 61 - 2 - 9484 59 44 Fax: 61 - 2 - 9484 59 44</td>
<td></td>
</tr>
<tr>
<td>Australia - Southern Division</td>
<td>VSL Prestressing (Aust.) Pty. Ltd. 84 - 4 - 8245 717 Quarry Bay Phone: 61 - 2 - 9484 59 44 Fax: 61 - 2 - 9484 59 44</td>
<td></td>
</tr>
<tr>
<td>Brunei Darussalam</td>
<td>VSL Systems (B) Sdn. Bhd. 84 - 4 - 8245 717 Quarry Bay Phone: 673 - 2 - 380 153/2 - 38162 Fax: 673 - 2 - 381 954</td>
<td></td>
</tr>
<tr>
<td>Guam</td>
<td>VSL Prestressing (Guam) Inc. 84 - 4 - 8245 717 Quarry Bay Phone: 67 - 846 80 61 Fax: 67 - 849 08 50</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>VSL Prestressing (Indonesia) 84 - 4 - 8245 717 Quarry Bay Phone: 62 - 21 - 570 07 86 Fax: 62 - 21 - 573 68 49</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>VSL Engineers (M) Sdn. Bhd. 84 - 4 - 8245 717 Quarry Bay Phone: 60 - 3 - 242 47 11 Fax: 60 - 3 - 242 93 97</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>Precision Precasting (Whgtn.) Ltd. 84 - 4 - 8245 717 Quarry Bay Phone: 64 - 5 - 337 64 81 Fax: 64 - 5 - 337 64 81</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Steeledale Systems (Pty) Ltd. 84 - 4 - 8245 717 Quarry Bay Phone: 33 - 1 - 69 2614 00 Fax: 33 - 1 - 69 2614 00</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>C & T Stronghold 84 - 4 - 8245 717 Quarry Bay Phone: 34 - 3 - 200 87 11 Fax: 34 - 3 - 209 85 90</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>Internordisk Spannamrings AB 84 - 4 - 8245 717 Quarry Bay Phone: 46 - 8 - 753 02 50 Fax: 46 - 8 - 753 02 50</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>VSL (Switzerland) Ltd. 84 - 4 - 8245 717 Quarry Bay Phone: 34 - 34 - 44799 11 Fax: 34 - 34 - 445 43 22</td>
<td></td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>Representative Office 84 - 4 - 8245 717 Quarry Bay Phone: 971 - 4 - 555 220 Fax: 971 - 4 - 518 244</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>VSL Norge AS 84 - 4 - 8245 717 Quarry Bay Phone: 46 - 8 - 753 02 50 Fax: 46 - 8 - 753 02 50</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>VSL Corporation 84 - 4 - 8245 717 Quarry Bay Phone: 44 - 773 54 26 00 Fax: 44 - 773 54 27 00</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>VSL Corporation 84 - 4 - 8245 717 Quarry Bay Phone: 30 - 1 - 360 95 43 Fax: 30 - 1 - 360 95 43</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>VSL Corporation 84 - 4 - 8245 717 Quarry Bay Phone: 91 - 22 - 578 44 81 Fax: 91 - 22 - 578 47 19</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>VSL Corporation 84 - 4 - 8245 717 Quarry Bay Phone: 91 - 22 - 578 44 81 Fax: 91 - 22 - 578 47 19</td>
<td></td>
</tr>
</tbody>
</table>

THE COMBINATION OF A WORLD-CLASS SPECIALIST CONTRACTOR WITH THE RESPONSIVENESS OF A LOCALLY BASES PARTNER